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Abstract
There is striking diversity in the capacity of different cognitive processes. In some settings, humans
preserve only a few bits of information over computation: for example, tasks involving working memory
and attention, perceptual identification, and numerosity estimation are famously limited (Miller, 1956).
Other cognitive processes seem essentially unbounded, both in what we could possibly represent (e.g., the
meanings of novel sentences in natural language) as well as what we can remember, once represented
(e.g., episodic memory). These strengths and apparent weaknesses are intimately related. We integrate
ideas from information-theory and the cognitive sciences to argue that in order to generalize efficiently–a
key cognitive strength—processing capacity will not just be finite, but profoundly limited–a famous
cognitive weakness. A unified computational framework precisely predicts classic error rates and patterns
of response times in working memory tasks, explains why only a few items can be enumerated with
accuracy and speed ("subitizing"), and why only a few items in a set can be accurately ranked ("absolute
identification"). This computational framework suggests that the human mind is optimized for a particular
objective: efficient generalization, at the expense of processing capacity.
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In the title of his seminal article,“The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information,” George Miller (1956) refers to a striking limit in
information processing, almost identical for three distinct cognitive capabilities. The most famous of these
— the number of “chunks” that can be held in short-term memory — has catalyzed decades of subsequent
work in the cognitive and brain sciences (Anderson, 1983; Alvarez & Cavanaugh, 2004; Baddelely, 1992;
Cowan, 2001; Mathy & Feldman, 2012; Miller & Cohen, 2001). However, in less-heralded sections of the
article, Miller considers the then nascent findings that other capabilities exhibit a similar capacity-limit:
the precision of absolute identification (i.e., the number of perceptual stimuli that can be ordinally ranked,
such as a set of tones by frequency), and the subitizing range in numerosity tasks (i.e., the number of
items in a set that be enumerated with both speed and precision, without explicit counting). Although
Miller wondered whether these limits owe to a common source, he ultimately concluded that the likeness
was coincidental. Here, we challenge that conclusion.

Information-theory offers normative principles for optimal representation in resource-limited
systems. The capacity of any cognitive process–whether it be perception, categorization, memory,
attention–is the maximum attainable mutual information between the input and output of the process
(Cover & Thomas, 1991). The mutual information conveys how much the uncertainty about one variable
is reduced, given knowledge of another.

Rather than considering each cognitive process separately, here, we assume that stark capacity
limits derive from a single representational objective: agents maximize a general mutual information
between the world (S) (i.e., the causes of sensory data) and their internal representation (I(S;Z)) (Attneave,
1954; Barlow, 1961; Linsker, 1988; Friston, 2010). In this setting, profound capacity limits derive from
two factors of the system that are in tension: efficiency and flexibility.

The first has been well characterized: it’s uncontroversial that—whatever the locus of these
resource limits– it’s impossible to preserve all the information about the world that agents receive (Sims,
2016; Van Den Berg & Ma, 2018). Agents have finite computational resources, requiring that those
resources be deployed efficiently. Efficient coding suggests allocating representational resources to states
(si ∋ S) in inverse proportion to their probability p(si). Famously, to avoid information loss, the
dimensionality of Z(S=si) must be at least -log p(si). Alternatively, the system could trade off information
for efficiency—this is the logic of lossy data compression (Shannon, 1948; Tishby, Pereira, & Bialek,
2000; Sims, 2016). But, in this setting, it remains unclear why agents should be willing to tolerate so
much information loss—surely, being able to remember more than a phone-number’s length of digits, for
example, would be beneficial.

It is useful to consider a second feature: agents also need to represent improbable–often novel–
states (requiring cognitive flexibility). The flexibility and efficiency of a representation (Z) are related
through its Shannon entropy (H(Z)). If Z is the set of all possible representational states [z1…z.n], H(Z) is:

The more possible states–as well as the more dispersed the probability distribribution over those states is–
the greater its entropy. Intuitively, the greater a system’s entropy, the less statistical structure (i.e.,
correlations between variables) there is in the representation, and the more flexible the system is. But, the
greater the entropy, the more computation that’s required to resolve the uncertainty–the less efficient it is.
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This is a version of the classic curse of dimensionality (Bellman, 1956) common in statistics and machine
learning.

Although this tension appears inescapable, work on representation from different corners of
cognitive science offers a way out: cognitive systems can be both fast and flexible by representing states
compositionally. For example, to represent what was where in a visual display (Figure 1a), the agent may
exploit both recurring and context-specific structure in the world. Representation depends on stable
variables that describe, for example, object features and spatial locations. Then, in a particular context, the
agent will re-combine those pieces to represent a yellow square in the upper left, above a red square.

A representational system is compositional, in this sense, if it has a vocabulary of stable
representations and a way to re-combine them, conditioned on features a particular context, where context
involves observed data (Si) the agent’s goals (Sk), even situational knowledge (Sj)1. A variant of this
scheme was made famous in the analysis of meaning in natural language (Frege, 1892; Partee, 1995;
Szabo, 2000) and has been influential both in symbolic theories of cognition and explanations of human
generalization (Fodor & Pylyshyn, 1988; Smolensky, 1990; Hummel & Holyoak, 2003; Kriete et al.,
2013; Lake et al. 2017; Frankland & Greene, 2020). Here, we specify key features of a compositional
representation in statistical terms, making it amenable to information-theoretic and neural network
implementation.

A compositional scheme is one in which, over long time scales (ontogenetic or phylogenetic),
agents acquire codes for behaviorally-relevant variables p(Z|S; ɸ) (e.g., space, time, color, shape). Over
short time scales (S=s), agents update a different set of parameters (𝛳 | S=s), conditioned on recent
sensory data and context (e.g., what is relevant?, what is where?). These two classes of parameters differ
in their rate of change—slowly (what appears ”stable”, ɸ) and quickly (what appears “dynamic”, (𝛳z)
(Hinton & Plaut, 1987; McClelland, O’Reilly, & McNaughton, 1995). Jointly, these two classes of
parameters enable both efficiency and flexibility: resources can be devoted to stable features of the world
in proportion to their probability (Z|S; ɸ), and the system can update 𝛳 to represent the structure in the
particular case. This enables efficient generalization, but, we argue, comes at the cost of severe limits in
processing capacity. To see why this reduces information-processing capacity, consider the mutual
information that agents seek to maximize.

1 This framing departs from the classic construal in linguistics and philosophy language, where  ‘compositionality’ often refers to
the idea that the meaning of a complex expression is a function of the meaning of its parts, the way they are combined (syntax),
and nothing else. Then, any additional “contextual” information that influences meaning is inconsistent with strong
compositionality. Here, we allow contextual signals (e.g., goal-representations, schemas), which may be internally generated to
play the same functional role as bottom-up signals. We see this as compositional in the relevant sense:they are shared across
contexts (ɸ), and influence computation through dynamic parameterization (𝛳).  In considering both the principles and
mechanics of the system abstractly, it is not always relevant whether the “meaning” of different representations reflect explicit
features (e.g., words) or inferred neural representations (“goals”/”context”).
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Figure 1. Overview of Computational Framework (A.) To reason quickly about unfamiliar states, (e.g., what was where),
agents adopt a compositional coding scheme. We translate that scheme in a formalism amenable to information-theoretic and
neural network analysis by defining two classes of parameters that differ in their rate of change–slowly ( ɸ), conditioned on data
over long time-scales, and quickly (𝛳), conditioned on features of a particular context (B.) This scheme is general, and we argue,
required to complete classic capacity-limited task paradigms in cognitive science. (C.) We foreshadow some of our model’s
results, focusing on phenomena that George Miller (1956) believed to be “coincidentally” similar. Our model precisely predicts
familiar limits in (top) short term memory, explaining phenomena motivating both slot models, with capacity ~2 bits–and
resource models, (middle) absolute identification, the number of items (e.g., tone frequency) that can be accurately ranked across
different sampling ranges, and (bottom) numerosity estimation, with fast and nearly perfect estimation until ~3. This suggests
these limits are no coincidence, but the consequence of a system tuned to efficient generalization.
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Formalism. Mutual information is a function of two competing entropies

The first entropy (H(Z)) describes the probability distribution over states of Z: this entropy places an
upper bound on I(S;Z)--the larger H(Z), the greater the capacity. The conditional entropy (H(Z|S))
describes the uncertainty about Z, given S: the more predictive S is of Z, and vice versa—the lower the
conditional entropy, the greater the capacity.

We assume that, to capture the variety of behavioral-relevant states, the agent represents S using a
vector of variables Z (Zi…ZN). Some of these variables may be devoted to, for example, representing color
(e.g., Zi…Zj)) others to shape (e.g., Zj+1…Zk),, others to space, yet others to time etc. Collectively, the joint
entropy of those N variables is a vector-valued generalization of Eq 1:

For present purposes, it is important that any statistical structure between the variables of Z decreases
H(Z) and therefore also mutual information, according to Eq 2. By contrast, the conditional entropy
(H(Z|S)) is defined as:

To maximize mutual information, the system seeks variables Z parameterized by ɸ that co-vary with S,
increasing the joint probability (p(S,Z)). But are also independent of one another (E[Zi

TZj]= 0). Whereas
statistical structure in the representation (Z) decreases mutual information, statistical structure between
representation (Z) and world (S) increases mutual information.

These are inherently in tension. Over long time-scales, it’s possible for the system to find
configurations of Z and ɸ that optimize this tradeoff. However, for the agent, there is little time to update
P(S,Z) for any particular—that is, improbable— case (S=s).

Formally, we can follow Cheyette & Piantadosi (2020) and quantify the amount of information
processing that is required to update the agent’s prior knowledge p(Z;ɸ) to her posterior representation
p(Z|S=s; ɸ) using the Kullback-Leibler-divergence (DKL)---a measure of the dissimilarity of probability
distributions– between the two.
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It is standard in information-theory to treat DKL as a measure of how much computation is required to
transform a representation optimized for p(Z) to a representation optimized for p(Z|S=s). Environmental
demands naturally place limits on how “far” agents’ prior distribution (p(Z)) can be from its posterior
p(Z|S=s). For an agent, the time-bound on information processing is often on the order of milliseconds to
seconds to represent sensory data, such that it can guide action.

For a single set of parameters, this is in conflict with the need to represent many possible states.
The more possibilities in Z, the greater the entropy, H(Z), the greater that distance DKL( p( Z|S=s) || p(Z) ).
According to Equation 1, tuning a system to maximize mutual information over long time-periods
increases H(Z). When the prior probability of any particular state is low—which occurs when the
dimensionality is high, that distance (DKL( p( Z|S=s) || p(Z) )) will be large.

In this context, a system that had only slow (ɸ) parameters would be efficient, but inflexible. It
could only represent those states that occurred with enough frequency to assign (estimate?) P(S=s,Z=z).
By contrast, a system that had only (𝛳) parameters would be flexible, but if those were not defined over
abstract, recurring features (color, space, time, etc.) and their expected relevance, it would be inefficient.
To meet the joint demands of flexibility and efficiency, agents adopt multiple classes of parameters for Z,
defined over different time-windows. The rate at which 𝛳 changes must be less than the time bound so
that any subsequent information processing that is required is also less that bound ((DKL(p(Z|S=s || p(Z)) <
b).

A variety of cognitive processes–for example, attention and variable-binding– can be seen as
ways to update fast parameters to deal with this problem. Attention, for example, reduces entropy by
associating top-down (“goals”) and bottom-up (“salience”) signals with a subset of representations (Zi),
restricting the space of behaviorally-relevant possibilities (e.g., is the task about color or shape?),  and
thereby decreasing entropy.

Then, to represent particular states (e.g., what was where?) agents must re-combine these
task-relevant variables (Von der Malsburg; 1999; Smolensky, 1990; Roskies, 1999; Marcus, 2003).
Although how neural circuits rapidly perform variable-binding (Von der Malsburg, 1994; Doumas et al.
2008; Hayworth, 2012; Kriete, 2013; Maas et al. 2019) remains an outstanding question, here, we focus
on the statistical properties. Whatever the mechanism, binding results in a transient statistical dependency
between Zi and Zj (e.g., what was where?).

This is the situation the agent in classic capacity-limited task paradigms finds herself in: a clear
set of task-relevant variables specified by the experimental context, with no long-term relationship
between semantic domains (See Figure 1B). To represent what was where, agents update 𝛳 to speed
information processing, but limiting processing capacity. The slow parameters ɸ remain undisturbed,
allowing efficient representation of future states. But the ability to represent novel states quickly using 𝛳
reduces processing capacity–that is, within-context entropy–profoundly. This is the curse of
compositionality. It motivates a particular process model that can explain classic error rates and response
times in cognitive science.

Computational Model. Consider a neural network of N nodes that jointly represent a collection of
behaviorally-relevant variables (Zi…ZN;  ɸ, 𝛳z). A node in this framework is a cognitive variable, and as
such, can be considered a statistical summary of the information-content of many individually noisy
neurons. To model cognitive phenomena, we can assume that these variables reflect features like the
spatial or temporal structure of a stimulus or set of stimuli, the color of an object, the intensity of a tone
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etc2.  Efficient coding dictates that representation (Z) minimizes dimensionality (“code-length”), while
preserving behaviorally-relevant information about the variable.

Shannon’s classic work showed that N is bounded by the entropy of the represented variable x
(-log[p(x)]). Although the number of distinctions that an agent might need to make for one variable (for
example, auditory pitch) might be quite different than the number of relevant distinctions for another (for
example, space), given that the efficient coding scheme is a logarithmic function of the number of
distinctions, N is more similar across variables than might be expected (See Figure 2). Intuitively, for a
binary coding scheme, with N variables we have a maximum of  ~2N distinct states in x.

If the agent knew the possible patterns, it might be possible to define a decoder capable of
“looking-up” the most likely S=s, given some partial information (S’). However, the agent’s situation is
different: she may need to decode novel combinations of variables: for example, a green square in the
upper left, given only partial information (where was the green square?).

We consider computation in terms inspired by models from statistical mechanics as systems that
minimize energies (Hopfield, 1982; Hinton & Sejnjowski, 1983). The “energy” of a neural network is a
global measure of the agreement between the knowledge stored in its parameters and current activity
values. This mathematical framework has been influential in computational neuroscience (Hopfield, 1982;
Friston et al. 2010; Gottlaub & Braun, 2021) as well as machine learning (Zemel et al. 1995; Hinton &
Salaktudinov, 2007; Salakhutdinov, 2018; LeCun et al. 2006).

Given a population of binary variables [Zi…ZN]---here, representations— that have discrete-time (t)
varying values (a) , computed as

update these individual variables according to

That is, “asynchronously”, until the energy function (E), (the negative of its probability)

reaches a local minimum. In the absence of additional noise, dynamics will drive the network toward
local energy minima. If this process is repeated over many different populations, it can be seen as
maximizing p(S,Z) and minimizing the conditional entropy H(Z=z |S=s), therein increasing I(S;Z).

Given no previous knowledge of S=s’, the system can update (𝛳|S=s, ɸ) based on the observed
data and goals. We assume that this update of 𝛳 is performed according to Hebb’s rule—simply a

2 At the neural level, each dimension can be represented by a large number of noisy-neurons that, in aggregate, are essentially
noiseless, by the law of large numbers. Here, the model is a cognitive model.
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description of what varied (what’s relevant) and what co-varied (what is bound to what) in the observed
data.

If 𝛳 reflects structure observed in data over a short time-period, under certain conditions, the
system can use the available information about Z (Z’) in concert with the knowledge in 𝛳, to recover
missing information. This has allowed Hopfield’s algorithm to serve as a potential memory for biological
systems.

Classic work has found Hopfield networks are profoundly capacity-limited (Hopfield, 1982;
McEliece et al. 1987; Sompolinsky, Amit, Guttfreund, 1985; Amit, 1989). The function that relates
memory retrieval to set size has a critical point (pcrit), at which a memory is dramatically less likely to be
retrieved. When the set size (p) <pcrit, the equilibrium states of the network are likely to correspond to
previously experienced patterns. When p/n >pcrit, they may reflect statistical summaries of those patterns.

This limit is often seen as a disadvantage for Hopfield networks and has motivated considerable
bodies of work in theoretical physics and machine learning aimed to increase their capacity (Krotov &
Hopfield, 2016). However, from another perspective (Mackay, 1991), classic Hopfield networks aren’t
solving a memory retrieval problem, but a representational problem: what is the least-biased (most
flexible) representation of the agent’s knowledge, given the statistics of the data. This is Jaynes’ (1957)
principle of maximum entropy: choose the probability distribution that maximizes the Shannon entropy,
consistent with the statistical information given.  In the particular case, agent’s assume the least–minimal
update to prior knowledge– and perform inference through energy minimizing processes. An objective
function that maximizes entropy and minimizes energy is equivalent to minimizing free energy (Amit,
1989; Friston, 2010; Gottlaub & Braun, 2020). Here, we call the computational model we use to explain
psychological data “MEME” (Maximum Entropy/Minimum Energy)3.

These two properties—efficient slow-learned representation and maximum flexibility in dynamic
re-combination— limit processing capacity, not just in principle, but profoundly (See Figure 3). As we
will see in the next section, given minimal assumptions, this framework precisely predicts the error rates
and qualitative response time curves for visual short term memory, absolute identification, and numerosity
estimation. The mind is not optimized for working memory tasks, nor for perceptual discrimination, nor
numerosity estimation, but for efficient generalization—a fundamentally different objective.

3 While the current colloquial use of this term is not lost on us, its use here is intended to directly reflect its original use and
meaning (Dawkins, 1976), which was a reference to configuration of knowledge that, by analogy to genes in the evolutionary
process, satisfy stability conditions defined by an interaction between internal and external sources of selective pressure.  Here,
we use it as an acronym, to describe the nature of those selective forces — Maximization of Entropy and Minimization of Energy
— that lead to the formation of stable knowledge representations within a system.
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Figure 2. Two-part explanation for low processing capacity. LEFT. Processing capacity (Pcrit) of a maximally flexible
(fully-connected) system, as a function of representation dimensionality (N) (RED). Human agents occupy a small, low-capacity
part of the space (BLACK BOX). RIGHT. However, assuming efficient coding, only a relatively small N is needed to represent a
vast number of possible states (R.) (N = ~log R). As a result, to distinguish a space of individuals equal in size to the number of
atoms in the universe (~1080), we would only need 256 binary variables, resulting in an expected processing capacity of ~16.
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George Miller’s Cases. To model cognition, we consider how a system would represent task-relevant
dimensions efficiently. All tasks can be considered to have a “cue”--what is perceptually available to the
participant as a stimulus– and a “target”---what must be inferred to complete the task. This information is
presented in the form of N-dimensional patterns (Z) presented to the Hopfield network. We call the dx

dimensional representation for the cue ‘X’ and the dy dimensional code for the target ‘Y’. X and Y are
slow-learned variables (e.g., X(s,ɸx)).  Given efficiency constraints, we can make informed guesses about
N (and dx and dy) in a particular task-domain. For a continuous input domain–—-locations in space, points
in time, values along a unidimensional continuum— an efficient re-coding of a 1D and 2D environments
bears a striking resemblance to the grid-like codes found in medial entorhinal cortex (Hafting et al. 2005;
Dordek, 2016; Stachenfeld et al. 2017; Wei et al. 2015). This is an increasingly well-studied case of a
more general set of desiderata: efficient low-dimensional representations of the structure of a domain
(Fiete, Burak, & Brookings, 2008; Wei et al., 2015; Stachenfeld, 2017). Grid-codes have exponential
representational capacity (Fiete, Burak, & Brookings, 2008) and the particular scaling of frequencies in
mammalian entorhinal cortex— — minimize the number of variables necessary to cover the space (Wei𝑒
et al., 2015). Mathematical analyses have shown that grid-like codes can be derived from simple
techniques like PCA (Dordek et al. 2016; Stachenfeld et al. 2017). Empirically, grid-like codes have been
found to represent non-spatial dimensions, such as sound (Aronov et al. 2017), olfactory stimuli (Horner
et al. 2018), 2D visual arrays (Bicanski & Burgess, 2019), and abstract conceptual dimensions
(Constantinescu et al. 2016).

Then, on a shorter time-scale, the experimental context determines what is relevant, and what
covaries (𝛳). We update these statistics according to Hebb’s rule. Given the cue (X), the model uses the
statistical knowledge in its slow learned representation X(s,ɸX), Y(s,ɸy) and its rapidly-updated
parameters (𝛳) to infer the most likely “missing information” using biologically-plausible learning and
updating rules.

Short Term Memory. We model a related body of work on short-term memory for visual displays (Visual
Short Term Memory: VSTM) central to the study of short-term memory in recent decades (Pashler, 1988;
Luck & Vogel, 1997; Wilken & Ma, 2004; Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Sims,
Knill, & Jacobs, 2012; Luck & Vogel, 2013; Bays, 2015). In its simplest form, the change detection
paradigm involves a brief presentation of a visual stimulus. After a momentary delay (~1000 ms), subjects
determine whether a change occurred with respect to the previous display. The number of items in the
display is varied over trials, and in canonical cases, only one item has the potential to change. We assume
that 𝛳 reflects the statistical structure of the image on a particular experimental trial—the binding of
location-codes (X) and color codes (Y) as in Eq. 4. That is, what colors were located where on the screen.

On this account, There is no dedicated working memory system: only a procedure for
representation and inference. We query the network with the location code of one object in the original
display, and allow the computational dynamics to evolve until equilibrium to identify the most likely
features of an item at that location. The model thus retrieves the memories in 𝛳— a representation of the
structure of the stimulus, given a location code (X). We compute the Hamming distance between the
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network’s settled state and the set of possible targets. This distance can be converted into a simple
decision rule for change detection. We use d<0.05, standard in work on Hopfield Networks (McEliece et
al. 1987). This algorithm naturally transitions from near precise retrieval to high-probability of error, as
has motivated classic slot models (Miller, 1956; Luck & Vogel, 1997).

Although the form of error rates will match the observed data, the exact quantities depend on
dx,dy. Here, we use a grid-like representations of a 2D visuo-spatial array (Bicanski & Burgess, 2019)
using the size and distance of their visual display and known exponential scaling properties of grid
modules (Stensola et al. 2012; Wei et al., 2015). Colors were treated as abstract locations in a circular
“environment”, and projected into a repeating grid-like code of a single dimension. The size of this
dimension was obtained based on knowledge of the range and discriminability of perceivable wavelengths
(e.g., Long et al. 2006). The frequencies were scaled according to empirically observed scaling of
grid-cells, known to minimize representation-length for a given number of distinctions (Stensola et al.,
2012; Wei et al., 2015). Remarkably, this simple algorithm captures not just the form, but the quantitative
limits of human change-detection error rates as a function of set size (See Figure 3) (Luck & Vogel,
1997). When the particular colors and locations are uniformly sampled, this coding scheme gives rise to a
qualitative decrease in accuracy between 3 and 4, as if the visual system contained a finite number (~3 or
4) of slots.

Other empirical work has shown that representational precision is not fixed, but instead varies as
a function of stimulus properties encoded in 𝛳 (e.g., Wilken & Ma, 2004; Alavarez & Cavanagh, 2004;
Bays & Husain, 2008; Sims et al., 2012). For example, Bays & Husain (2008) showed that as set size
increases, the encoded stimulus-precision declines as a power-law (See Figure 2H). The more items in a
display, the less precisely we encode the spatial locations or orientations of individual items. We measure
the precision as the Hamming distance of the equilibrium state from the target (inverse precision). Figure
2 plots inverse precision as a function of set size. Inverse precision tracks the empirically observed
decline (Bays & Husain (2008)): the more items present in the image, the further the equilibrium state is
from the target, and the more difficult it becomes to differentiate similar queries.
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Figure 3. Classic Visual Short Term Memory (VSTM) phenomena. (A) We consider a visual stimulus of colored shapes at particular locations
(Luck & Vogel, 1997), and assume features are factored into separate representational streams and re-combined. Locations are represented by
grid-like codes of the 2D array and colors are grid-like codes of the 1D color space. The stimulus-specific weights (𝛳) reflect the correlational
structure of those variables observed in a particular image (what color was where?). (B) Change detection involves presenting the network with a
location code and allowing it to evolve until equilibrium. Changes are reported on 50% of change trials in which the correct color is not within a
Hamming Distance of 0.05 from the target. (C & D). The model’s performance closely tracks Luck & Vogel’s empirical observation of qualitative
change in performance at ~3 items (E,F). In this framework, representational precision also decreases as an approximate power law, as observed
in Bays & Husain (2008). The model thus captures phenomena central to both slot and resource models.

12



Frankland, Webb, & Cohen - Curse of Compositionali13ty

The iterative nature of the inference algorithm generates predictions about the functional form of
human response times, as well as error rates. We find that a surprising number of previously observed
human response  times—logarithmic, linear, “elbow”— can be explained as different parameterization of
the Hopfield model, where these parameterizations are determined by efficient representation of
task-relevant domains (X,Y) and their statistical dependencies (𝛳, “bindings”) (See Figure 4).

We consider, as an illustrative case, a famous memory experiment owing to Sternberg (1966).
There, participants were presented with a random sequence of integers (e.g., 8, 4, 2, 5).  Seconds later,
participants were queried with targets or foils to give a yes/no response regarding whether the query was
in the stimulus set (e.g., 2). Sternberg (1966) famously found strikingly linear response times as a
function of set size, with nearly equal response times for yes/no responses, suggesting exhaustive serial
search of a memory system.

In the current framework, the settling time function depends on dx/dy and p. It’s thus necessary to
consider the representation of X (the integers), as well as the episodic context Y (context) associated with
it. (task-relevant subset of number-line). An efficient representation of the task-relevant integers
{0,9}requires only ~3.32 bits. The representation of the spatio-temporal (episodic) context is
higher-dimensional. In the regime in which dx = 3.32 and dx<dy, settling times are approximately linear as
a function p, with a maximum r2 on a linear model at dy =~10*dx. ~0.99. See Figure 4. Notably, ~10*3.32
is in the range of what would be expected for a grid-like representation of the recent past—i.e., time-code
that is bound to each successive integer. Sternberg’s recognition memory task can therefore be seen as a
case in which an efficient low-dimensional integer code (X) is used to query the structured knowledge in
W to retrieve a higher-dimensional context code (Y), rather than an exhaustive serial search of slots.

If the settling process is interrupted at random points, as in Reed (1973)’s stop-signal behavioral
paradigm, the model displays the same functional form as human speed/accuracy tradeoff—exponential
increases in accuracy before asymptote. This supports the contention that the algorithms for learning and
inference are compelling models of human cognitive phenomena, when specified at the right level of
description. Although how these forms map onto the absolute values of RTs will depend on the additive
contribution of upstream perceptual processes and downstream motor output, we suggest the functional
form of many response times can be characterized by (a) an efficient representations of X (the cue) and Y
(the target), (b) their rapid association according to the Hebb rule, and (c) the use of a generalized form of
Hopfield’s algorithm to find local energy minima.
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Figure 4. Our model explains a variety of qualitatively different response time functions in cognitive tasks, as a function of efficient task-relevant
representation. (A) Display of Sternberg’s (1966) classic recognition memory results: linear response times as a function of set size, indicative of
serial exhaustive search through the system’s memory. (B) However, a Hopfield network with asynchronous updating and efficient
representations of task-relevant domains predicts the same result. (C.) In addition it captures the character of other paradigms—for example, for
numerosity estimation as a function of set size—, where classic behavioral results show an “elbow” response time curve, often taken as evidence
for separate systems. (D) Our model predicts both phenomena due to differences in the dimensionality (efficient representation) of the cue (dx)
and target (dy) domains. The elbow arises when dx >> dy (here, a spatial array (which requires many bits) vs. the integers 1-8 (requires only 3
bits). (E).This suggests a general function for defining the critical points (vertical lines) in RTs as a function of representation dimensionality (N,
1-100, colors). We find the function to be ,  an equation previously described in theoretical work on memory capacity in Hopfield ~ 𝑁

2 𝑙𝑜𝑔 𝑁

Networks. (McEliece et al. 1987).
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Absolute Identification. We can extend the model to account for a collection of phenomena in absolute
identification that were of particular interest to Miller. In an absolute identification task, subjects are
presented with a set of stimuli along with ranks to be associated with those stimuli: for example, a set of
nine evenly spaced tones between 1000 hz and 5000 hz, with a rank of one assigned to 1000 hz, a rank of
two assigned to 1500 hz, and so on. This occurs at the beginning of the experiment (“demonstration
period”). Then, when presented with each stimulus, subjects must report its rank: for example, in a set of
pitches, a 2000 hz tone might have been the tone with the third lowest frequency. There, psychologists
identified severe limits in the number of unidimensional perceptual stimuli that humans can reliably
identify (~2.5 bits) — strikingly similar to capacity limits in short-term memory. Moreover, these effects
are famously invariant to the sampling range. Pollack (1953) found that AI limits are nearly identical
regardless of whether tones are sampled across the entire range of perceivable pitches, (e.g., from 100 to
10100 hz in intervals of 1000 hz) or from a narrow range (e.g. only from 4000 to 5000 hz in intervals of
100 hz). Despite the tenfold increase in absolute difference in hZ subjects show little improvement in
performance.

We assume that absolute identification involves slow-learned descriptions of the relevant stimulus
dimension (pitch in the above example) and a mental number line for ranking them. The particular
mapping in 𝛳 between codes for the stimulus dimension and codes for the number line are learned for that
particular experimental context.We derive expected grid codes for the Pollack’s pitch dimension based on
empirical JND of the modality-specific perceptual range (20hz to 20khz with a JND of 0.5%), as well as
general grid-cell scaling properties (Stensola et al., 2012; Wei et al., 2015). Pollack (1952) employed
equally spaced stimuli in the range of 100 hz to 10000 hz.

To perform the identification task, we map each sampled pitch from its 1D location to a
multivariate space of frequencies and phases. The network is presented with the grid-code corresponding
to a particular stimulus and the activity states evolve until equilibrium, in order to identify the most likely
number (i.e., the number whose code has the shortest Hamming distance to the settled state). Figure 3e
shows model results over 1000 trials for Pollack’s pitch limits plotted in bits, capturing the observed
capacity limit of <2.5 bits. Here, the within-context correlations determine 𝛳, and as a result, variables
that are stable within-context exert no effect on the computational dynamics: no variance in Eq. 4. means
no opportunity to influence the local updates. When the stimuli are concentrated at narrow ranges (e.g.,
4000-5000 hz), low-frequency grid-cells thus exert no effect. However, we call this “approximate”
invariance, given that, as we gradually increase the range, lower frequencies vary across stimuli with
greater probability. This introduction of more variables leads to a small increase in capacity with
increased sample range. But given the geometric progression of the frequencies in the code, the increase
is small. See Figure 3D-F.

The finding of approximate scale-invariance depends on the experimental design decision to keep
the sampling ratios equivalent across ranges. Gravetter and Lockhead (1973) found that when the same
stimuli are flanked by nearby neighbors, precision is greater than when they are flanked by the same
number of peripheral stimuli (“broad”) (See Figure 3G-I) (See also Braida & Durlach, 1972, Rouder,
2001). Gravetter & Lockhead’s (1973) “broad sampling” condition introduces within-context variance in
low-frequency grid-cells. These low-frequency variables carry no information about neighboring items,
but still influence the computational dynamics in Eqs. 5 & 6, given their variance.
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Broad sampling thus decreases precision for the same reason that increasing set size decreases
precision in the VSTM work outlined in the previous section (Wilken & Ma, 2004; Bays & Husain,
2008): both introduce redundancies in the code through correlations, decreasing achievable information
rates for certain discriminations. For a cognitive system, these within-context redundancies are the
statistics induced by compositionality in the code; mechanisms capable of dramatic increases in the
number of possible states we could encode quickly. This positions us well to deal with unfamiliar futures,
but at the cost of capacity limits in information processing when we actually encounter them.

Figure 5. (A) Schema of Absolute Identification task. Subjects are presented with a set of stimuli along a target dimension (e.g.
pitch) together with associated ranks. The task is to later report the corresponding rank when queried with a particular stimulus.
To model these phenomena, we assume (B) 1D grid-like code for perceptual dimensions, and a multi-step program for deriving a
representation of the mental number line from first principles and data (C). We derive a number line representation by assuming
(C1) variable number of objects are presented at random locations in a 2D array. In each case, agents (C2) update 𝛳 to attend to
those locations. We find (C3) that the equilibrium states are perfectly efficient (log N), matching well-known psychophysical
phenomena indicating a “compressed” mental number line (Dehaene, 2003). We use this compressed number line for modeling.
(D) Pollack found a limit of ~2.5 bits of information for absolute identification of pitch, highlighted in Miller (1956). This limit is
approximately scale invariant (E), as increasing the absolute difference between pitches has little effect on discriminability. Our
model reproduces the limit (F), and the approximate scale-invariance effect (G), to the point of predicting the slight linear
increase (E vs.G). (H) However, this is not due to a fixed item capacity, but instead depends on the relationship between sampling
distribution and precision. For example, “broad sampling” to include stimuli near the min and max of the perceivable range
(Gravetter & Lockhead, 1973) reduces precision on the middle items, relative to narrow sampling. (I) Our model predicts this
pattern, as broad sampling introduces low-frequency redundancies into the codes, causing increased errors.
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Numerosity Estimation. Finally, Miller addresses a quantitatively similar limit in the number of items in a
visual display that can be rapidly and accurately enumerated while the stimulus remains on the screen.
There, subjects show fast and nearly perfect report of small numbers (the “subitizing” range), but
increasingly slow and error-prone reports thereafter. Given standard experimental conditions, the limit
with visual stimuli is believed to be between 3 and 4 (Mandler & Shebo, 1982; Trick & Pylyshyn, 1993;
Revkin et al., 2008; Cheyette & Piantadosi, 2020, smaller than the original ~6 from Kaufman et al.,
1948), and is often taken to evidence a separate “small number” system (Revkin et al., 2008). As with
short term memory, we suggest a single system that exhibits qualitatively different behavior as a function
of the observed statistics.

Here, the slow-learned representation of 2D visual array is as described in the VSTM section, and
the slow-learned 1D number line is as described in the section on absolute identification. Subjects’ task is
to infer the latter, given the former. The fast-weights reflect the objects presented at particular locations,
which will vary from 1 to Ntask. In this context, the Hopfield network can be seen as a model of what
captures attention with limits imposed by the rapid association of spatial variables in 𝛳.

We assume that 𝛳 is updated on each trial, and further that it contains perfect knowledge of the
covariance between the 2D grid code for a stimulus display of N items, and the 1D codes from 1 to N, "as
if” the agent were sequentially counting them in a random order. Of course, subjects are not mentally
counting in this task, but this forms an idealized model. The model is thus “told” the correct answer by
associating the complete image with correct integer code. But it must maintain the set of associations
from 1 to N in a common representational space (𝛳). Any capacity limits the model exhibits therefore
stem from the representation and computational dynamics.

Figure 6 shows that this model exhibits phase transitions in error rates at ~3 or 4, like human
subjects. In addition to the error curves, we compute the mean number of passes through the variables
until equilibrium. These functions track the RT curves commonly observed: if p<~3, RTs are almost flat,
but if p>3, reaction times increase monotonically (Kaufman, 1948; Mandler & Shebo, 1983; Trick &
Pylyshyn, 1993; Revkin et al., 2008; Cheyette & Piantadosi, 2020). Iterations until equilibrium in the
Hopfield network follow the same structure.As with VSTM, we expect differences in numerosity
estimation to be influenced by recent updates to 𝛳, contingent on the experimental context. These drive
differences in the computational dynamics.

Revkin et al. (2008) observe fast RTs, low error rates and minimal response variance when the
possible responses are 1-8, but not when the possible responses are 10-80 in intervals of 10 (See Figure
6). This failure of universal Weber-like precision is taken as evidence for a special system for small
numbers. In our view, this can be explained by the nature of the representation and the computational
dynamics. Here, we assume 𝛳 reflects the range of integers under consideration (1-8 vs. 10-80). As
above, the model is “told” the correct answer by associating the complete image with correct integer code,
and limits are imposed by the nature of the representation inherited from the slow-codes for space and
number, and the computational dynamics. Under this scheme, the Hopfield network tracks empirical
results in both conditions (See Figure 6).

There is no need to invoke separate fixed-capacity systems: Representations optimized for
efficient generalization are sufficient to explain these phenomena. Although the current framework agrees
with the long-standing observation that small numbers are cognitively special (Revkin et al. 2008), this
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doesn’t require them to be executed by separate systems. Like Gallistel & Gelman, (1992) and Cheyenne
& Piantadosi (2020), our model suggests that the specialness is in the output, not the mechanism. We
further suggest that representations optimized for efficient generalization are sufficient to explain not only
the qualitative forms of these results, but also the particular capacity-limits (~3-4). As with the other
phenomena we model, we do so without fitting any task-specific empirical data, or making assumptions
about the amount of internal “noise”. Instead, profound capacity-limits are predictable using general
estimates of the JND of task-relevant variables, and critically, an abstract description of a computational
system optimized for efficient generalization.

On our view, qualitative changes in error rates and response times are expected at critical points,
the particular location of these points will depend on the nature of the representation, and the nature of the
representation itself has been determined by (a) efficient coding of behaviorally-relevant distinctions and
(b) the need to generalize quickly. Jointly, this offers a framework for understanding classic
capacity-limited phenomena. Profound capacity-limits do not owe to any biophysical property, nor to
exhaustion of a finite number of slots. Instead, the main objective is simply to configure an agent to stand
ready to represent novel states when they appear, given limited time. On this view, capacity limits— one
of humans most striking deficits—can be seen as a consequence of one of our greatest strengths: efficient
generalization. This is the curse of compositionality.
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Figure 4. Numerosity estimation. (A) Stimuli are visual displays consisting of sets of objects. Set size (N) varies across trials. Subjects’
task is to report the cardinality of the set, and error rates and response times are collected. To model this task, we assume that agents
factor the stimulus into a spatial representation (grid code of 2D space) and a number line representation that must then be related (“how
many?”). Here, we allow the network to “know” the true cardinality on each trial by associating the code for the complete spatial layout
with a representation of N in 𝛳. However, we assume this requires that cardinalities<N also be in 𝛳. The capacity-limits then stem from
(1) the correlations in the spatial structure as N increases and (2) the decreasing precision in the number code with increasing cardinality
(itself determined by correlational structure on a slower time scale, as in the absolute identification task). (B). To evaluate the model, the
network is queried with the spatial representation of the image, and allowed to evolve until equilibrium to identify the most similar
number-code. (C). Example human behavioral data from Revkin et al. (2008) showing standard subitizing effect in error rates. (D) Like
humans, the model shows nearly perfect performance when N<=3, but declining performance thereafter. (E&F) Likewise, the canonical
human RT signature is qualitatively predicted by the number of iterations (settling time) through the Hopfield network. (G,H,I,J). Both
human and model performance depends on the experimental context shaping the statistics in The weights (𝛳) encode the network’s
knowledge of this relationship. (1-8 naming left vs. 10-80 naming right).
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