
Determinantal Point Process Attention Over Grid Codes
Supports Out of Distribution Generalization

Shanka Subhra Mondal smondal@princeton.edu
Department of Electrical and Computer Engineering
Princeton University

Steven Frankland s.m.frankland@gmail.com
Princeton Neuroscience Institute
Princeton University

Taylor W. Webb taylor.w.webb@gmail.com
Department of Psychology
University of California, Los Angeles

Jonathan D. Cohen jdc@princeton.edu
Princeton Neuroscience Institute
Princeton University

Abstract

Deep neural networks have made tremendous gains in emulating human-like intelligence,
and have been used increasingly as ways of understanding how the brain may solve the
complex computational problems on which this relies. However, these still fall short of, and
therefore fail to provide insight into how the brain supports strong forms of generalization
of which humans are capable. One such case is out-of-distribution (OOD) generalization—
successful performance on test examples that lie outside the distribution of the training set.
Here, we identify properties of processing in the brain that may contribute to this ability.
We describe a two-part algorithm that draws on specific features of neural computation
to achieve OOD generalization, and provide a proof of concept by evaluating performance
on two challenging cognitive tasks. First we draw on the fact that the mammalian brain
represents metric spaces using grid-like representations (e.g., in entorhinal cortex): abstract
representations of relational structure, organized in recurring motifs that cover the repre-
sentational space. Second, we propose an attentional mechanism that operates over these
grid representations using determinantal point process (DPP-A) - a transformation that en-
sures maximum sparseness in the coverage of that space. We show that a loss function that
combines standard task-optimized error with DPP-A can exploit the recurring motifs in grid
codes, and can be integrated with common architectures to achieve strong OOD general-
ization performance on analogy and arithmetic tasks. This provides both an interpretation
of how grid codes in the mammalian brain may contribute to generalization performance,
and at the same time a potential means for improving such capabilities in artificial neural
networks.

1 Introduction

Deep neural networks now meet, or even exceed, human competency in many challenging task domains (He
et al., 2016; Silver et al., 2017; Wu et al., 2016; He et al., 2017). Their success on these tasks, however, is
generally limited to the narrow set of conditions under which they were trained, falling short of the capacity
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for strong forms of generalization that is central to human intelligence (Barrett et al., 2018; Lake & Baroni,
2018; Hill et al., 2019; Webb et al., 2020), and hence fail to provide insights into how our brain supports them.
One such case is out-of-distribution (OOD) generalization where the test data lies outside the distribution
of the training data. Here, we consider two challenging cognitive problems that often require a capacity for
OOD generalization: a) analogy and b) arithmetic. What enables the human brain to successfully generalize
on these tasks, and how might we better realize that ability in deep learning systems?

To address the problem, we focus on two properties of processing in the brain that we hypothesize are
useful for OOD generalization: a) the abstract representations of relational structure, in which relations are
preserved across transformations like translation and scaling (such as observed for grid cells in mammalian
medial entorhinal cortex (Hafting et al., 2005)); and b) an attentional objective to attend to abstract repre-
sentations that have maximum variance and minimum correlation among them, over the training data. The
net effect of these two properties is to normalize the representations of training and testing data in a way
that preserves their relational structure, and allows the network to learn that structure in a form that can
be applied well beyond the domain over which it was trained.

In previous work, it has been shown that such OOD generalization can be accomplished in a neural network
by providing it with a mechanism for temporal context normalization (Webb et al., 2020), a technique
that allows neural networks to preserve the relational structure between the inputs in a local temporal
context, while abstracting over the differences between contexts. Here, we test whether the same capabilities
can be achieved using a well-established, biologically plausible embedding scheme – grid codes – and an
adaptive form of normalization that is based strictly on the statistics of the training data in the embedding
space. We show that when deep neural networks are presented with data that exhibits such relational
structure, grid code embeddings coupled with an error-minimizing/attentional objective promotes strong
OOD generalization. We unpack each of these theoretical components in turn before describing the tasks,
modeling architectures, and results.

Abstract Representations of Relational Structure. The first component of the proposed framework
relies on the idea that a key element underlying human-like OOD generalization is the use of low-dimensional
representations that emphasize the relational structure between data points. Empirical evidence suggests
that, for spatial information, this is accomplished in the brain by encoding the organism’s spatial position
using a periodic code consisting of different frequencies and phases (akin to a Fourier transform of the space).
Although grid cells were discovered for representations of space (Hafting et al., 2005), they have since been
identified in non-spatial domains, such as auditory tones (Aronov et al., 2017), odor (Bao et al., 2019), and
conceptual dimensions (Constantinescu et al., 2016). These findings suggest that the coding scheme used
by grid cells may serve as a general representation of metric structure that may be exploited for reasoning
about the abstract conceptual dimensions required for higher level reasoning tasks, such as analogy and
mathematics (McNamee et al., 2022). Of interest here, the periodic response function displayed by grid cells
belonging to a particular frequency is invariant to translation by its period, and increasing the scale of a
higher frequency response gives a lower frequency response and vice versa, making it invariant to scale across
frequencies. This is particularly promising for prospects of OOD generalization: downstream systems that
acquire parameters over a narrow training region may be able to successfully apply those parameters across
transformations of translation or scale, given the shared structure (which can also be learned (Cueva & Wei,
2018; Banino et al., 2018; Whittington et al., 2020)).

DPP attention (DPP-A). The second component of our proposed framework is a novel attentional ob-
jective that uses the statistics of the training data to sculpt the influence of grid cells on downstream
computation. Despite the use of a relational encoding metric (i.e., grid code), generalization may also re-
quire identifying which aspects of this encoding that could potentially be shared across training and test
distributions. Here, we implement this by identifying, and restricting further processing to those grid em-
beddings that exhibit the greatest variance, but are least redundant (that is, pairwise uncorrelated) over the
training data. Formally, this is captured by maximizing the determinant of the covariance matrix of the grid
embeddings computed over the training data (Kulesza & Taskar, 2012). To avoid overfitting the training
data, we attend to a subset of grid embeddings that maximize the volume in the representational space,
diminishing the influence of low-variance codes (irrelevant), or codes with high-similarity to other codes
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(redundant), which decrease the determinant of the covariance matrix. We refer to this as DPP attention,
or DPP-A.

DPP-A is inspired by mathematical work in statistical physics using Determinantal Point Processes (DPPs)
that originated for modeling the distribution of fermions at thermal equilibrium (Macchi, 1975). DPPs have
since been adopted in machine learning for applications in which diversity in a subset of selected items is
desirable, such as recommender systems (Kulesza & Taskar, 2012). Recent work in computational cognitive
science has shown DPPs naturally capture inductive biases in human inference, such as some word-learning
and reasoning tasks (e.g., one noun should only refer to one object) while also serving as an efficient memory
code (Frankland & Cohen, 2020). In that context, the learner is biased to find a set of possible word-
meaning pairs whose representations exhibit the greatest variance and lowest covariance on a task-relevant
dataset. DPPs also provide a formal objective for the type of orthogonal coding that has been proposed to be
characteristic of representations in mammalian hippocampus, and integral for episodic memory (McClelland
et al., 1995). Thus, using the DPP objective to govern attention over grid code representations, known to be
implemented in the entorhinal cortex (one synapse upstream of the hippocampus), aligns with the function
and organization of cognitive and neural systems underlying the capability for abstraction.

Taken together, the representational and attention mechanisms outlined above define a two-component
framework of neural computation for OOD generalization, by minimizing task-specific error subject to: i)
embeddings that encode relational structure among the data (grid cells), and ii) attention to those embed-
dings that maximize the "volume" of the representational space that is covered, while minimizing redundancy
(DPP-A). Below, we demonstrate proof of concept by showing that these mechanisms allow artificial neural
networks to learn representations that support OOD generalization on two challenging cognitive tasks and
therefore serve as a reasonable starting point for examining the properties of interest in these networks.

Figure 1: Schematic of the overall framework. Given a task (e.g., an analogy to solve), inputs (denoted as
{A, B, C, D}) are represented by grid codes, consisting of units ("grid cells") representing different combina-
tions of frequencies and phases. Grid embeddings (xA, xB , xC , xD) are multiplied elementwise by a set of
learned attention weights w, then passed to a inference module R. The attention weights w are optimized
using LDP P , which encourages attention to grid embeddings that maximize the volume of the representa-
tional space. The inference module outputs a score for each candidate analogy (consisting of A, B, C and a
candidate answer choice D). The scores for all answer choices are passed through a softmax to generate an
answer ŷ, which is compared against the target y to generate the task loss Ltask.
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(a) Translation (b) Scaling

Figure 2: Generation of test analogies from training analogies (region marked in blue) by: a) translating
both dimension values of A, B, C, D by the same amount; and b) scaling both dimension values of A, B, C, D
by the same amount. Since both dimension values are transformed by the same amount, each input gets
transformed along the diagonal.

2 Approach

Figure 1 illustrates the general framework. Task inputs, corresponding to points in a metric space, are
represented as a set of grid code embeddings xt=1..T , that are then passed to a inference module R. The
embedding of each input is represented by the pattern of activity of grid cells that respond selectively to
different combinations of phases and frequencies. Attention over these is a learned weighting w of the grid
cells, the weighted activations of which (x⊙w) are passed to the inference module (R) . The parameterization
of w and R are determined by backpropagation of the error signal obtained by two loss functions over the
training set. The first, LDP P favors attentional weightings over the grid cells that maximize the DPP-A
objective; that is, the "volume" of the representational space (grid code) covered by the attended grid cells.
The second, Ltask is a standard task error term (e.g., the cross entropy of targets y and task outputs ŷ over
the training set). We describe each of these components in the following sections.

2.1 Task setup

2.1.1 Analogy task

We constructed proportional analogy problems with four terms, of the form A : B :: C : D, where the
relation between A and B was the same as between C and D. Each of A, B, C, D was a point in the integer
space Z2, with each dimension sampled from the range [0, M − 1], where M denotes the size of the training
region. To form an analogy, two pairs of points (A, B) and (C, D) were chosen such that the vectors AB and
CD were equal. Each analogy problem also contained a set of 6 foil items sampled in the range [0, M − 1]2
excluding D, such that they didn’t form an analogy with A, B, C. The task was, given A, B and C, to select
D from a set of multiple choices consisting of D and the 6 foil items. During training, the networks were
exposed to sets of points sampled uniformly over locations in the training range, and with pairs of points
forming vectors of varying length. The network was trained on 80% of all such sets of points in the training
range, with 20% held out as the validation set.

To study OOD generalization, we created two cases of test data, that tested for OOD generalization in
translation and scale. For the translation invariance case (Figure 2(a)), the constituents of the training
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analogies were translated along both dimensions by the same amount 1 KM such that the test analogies
were in the range [KM, (K + 1)M − 1]2 after translation. Non-overlapping test regions were generated for
K ∈ [1, 9]. Similar to the translation OOD generalization regime of Webb et al. (2020), this allowed the
graded evaluation of OOD generalization to a series of increasingly remote test domains as the distance from
the training region increased. For example a training analogy A : B :: C : D after translation by KM ,
would be A + KM : B + KM :: C + KM : D + KM . For the scale invariance case (Figure 2(b)), we scaled
each constituent of the training analogies by K so that the test analogies after scaling were in the range
[0, KM − 1]2. Thus, an analogy A : B :: C : D after scaling by K, would be KA : KB :: KC : KD. By
varying the value of K from 1 to 9, we scaled the training analogies to occupy increasingly distant and larger
regions of the test space.

2.1.2 Arithmetic task

We tested two types of arithmetic operations, corresponding to the translation and scaling transformations
used in the analogy tasks: elementwise addition and multiplication of two inputs A and B, each a point in Z2,
for which C was the point corresponding to the answer (i.e., C = A + B or C = A ∗ B). As with the analogy
task, each arithmetic problem also contained a set of 6 foil items sampled in the range [0, M−1]2, excluding C.
The task was to select C from a set of choices consisting of C and the 6 foil items. Similar to the analogy task,
training data was constructed from a uniform distribution of points and vector lengths in the training range,
with 20% held out as the validation set. To study OOD generalization, we created testing data corresponding
to K = 9 non-overlapping regions, such that C ∈ [M, 2M − 1]2, [2M, 3M − 1]2, ...[KM, (K + 1)M − 1]2.

2.2 Architecture

2.2.1 Grid codes

As discussed above, grid codes are found in the mammalian neocortex, that support structured, low-
dimensional representations of task-relevant information. For example, an organism’s location in 2D allocen-
tric space (Hafting et al., 2005), the frequency of 1D auditory stimuli (Aronov et al., 2017), and conceptual
knowledge in two continuous dimensions (Constantinescu et al., 2016) have all been shown to be represented
as unique, similarity-preserving combinations of frequencies and phases. Here, these codes are of interest
because the relational structure in the input is preserved in the code across translation and scale. This offers
a promising metric that can be used to learn structure relevant to the processing of analogies (Frankland
et al., 2019) and arithmetic over a restricted range of stimulus values, and then used to generalize such
processing to stimuli outside of the domain of task training.

To derive grid codes for stimuli, we follow the analytic approach described by Bicanski & Burgess (2019) 2.
Specifically, the grid code (x) for a particular stimulus location A is given by:

xA = max(0, cos(z0) + cos(z1) + cos(z2)) (1)

where,
zi = bi ∗ (FA + Aoffset) (2)

b0 =
(

cos(0)
sin(0)

)
, b1 =

(
cos( π

3 )
sin( π

3 )

)
, b2 =

(
cos( 2π

3 )
sin( 2π

3 )

)
(3)

The spatial frequencies of grids (F ) begin at a value of 0.0028 ∗ 2π. Wei et al. (2015) have shown that, to
minimize the number of variables needed to represent an integer domain of size S, the firing rate widths and
frequencies should scale geometrically in a range (

√
2,

√
e), closely matching empirically observed scaling in

entorhinal cortex (Stensola et al., 2012). We choose a scaling factor of
√

2 to efficiently tile the space. One
consequence of this efficiency is that the total number of discrete frequencies in entorhinal cortex is expected

1We transformed by the same amount along both dimensions so that the OOD generalization regimes are similar to Webb
et al. (2020).

2https://github.com/bicanski/VisualGridsRecognitionMem
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to be small. Empirically, it has been estimated to be between 8-12 (Moser et al., 2015) 3. Here, we choose
Nf = 9 (dimension of F ) as the number of frequencies. A refers to a particular location in a two dimensional
space, and 100 offsets (Aoffset) are used for each frequency to evenly cover a space of 1000 × 1000 locations
using 900 grid cells. These offsets represent different phases within each frequency and since there are 100
of them, Np = 100. Each point from the set of 2D points for the stimuli in a task (described in Section 2.1),
was represented using the firing rate of 900 grid cells which constituted the grid embedding for that point
to form the inputs to our model.

2.2.2 DPP-A

We hypothesize that the use of a relational encoding metric (i.e., grid code) is extremely useful, but not
sufficient for a system to achieve strong generalization, which requires attending to particular aspects of the
encoding that can capture the same relational structure across the training and test distributions. Toward
this end, we propose an attentional objective that uses the statistics of the training data to attend to grid
embeddings that can induce the inference module to achieve strong generalization. Our objective, which we
describe in detail below, seeks to identify those grid embeddings that exhibit the greatest variance but are
least redundant (pairwise uncorrelated over the training data). Formally, this is captured by maximizing
the determinant of the covariance matrix of the grid embeddings computed over the training data (Kulesza
& Taskar, 2012). Although in machine learning, DPPs have been particularly influential in work on recom-
mender systems (Chen et al., 2018), summarization (Gong et al., 2014; Perez-Beltrachini & Lapata, 2021),
neural network pruning (Mariet & Sra, 2015), here, we propose to use maximization of the determinant of the
covariance matrix as an attentional mechanism to limit the influence of grid embeddings with low-variance
(which are less relevant) or with high-similarity to other grid embeddings (which are redundant).

For the specific tasks that we study here, we have assumed the grid embeddings to be pre-learned to
represent the entire space of possible test data points, and we are simply focused on the problem of how
to determine which of these are most useful in enabling generalization for a task-optimized network trained
on a small fraction of that space (Figure 2). That is, we look for a way to attend to a subset of grid-
cells frequencies whose embeddings capture recurring task-relevant relational structure. We find that grid
embeddings corresponding to the higher spatial frequency grid cells exhibit more variance on the training
data than the low frequency embeddings. In any training set, low spatial frequency embeddings may carry
information about the stimuli that can be used to help minimize task-error, but, critically, the higher
frequency embeddings due to their higher variance tend to preferentially capture the same relational structure
across different regions which is necessary for OOD generalization. Accordingly, we find that the determinant
maximizing grid cell embeddings are those that encode higher frequencies.

Formally, we treat obtaining LDP P as an approximation of a determinantal point process (DPP). A DPP
P defines a probability measure on all subsets of a set of items X = {1, 2, ...N}. For every x ⊆ X ,
P (x) ∝ det(Vx). Here V is a positive semidefinite covariance matrix and Vx = [Vij ]i,j∈x denotes the
matrix V restricted to the entries indexed by elements of x. The maximum a posteriori (MAP) problem
argmaxx det(Vx) is NP-hard (Ko et al., 1995). However f(x) = log(det(Vx)) satisfies the property of a
submodular function, and various algorithms exist for approximately maximizing them. One common way
is to approximate this discrete optimization problem by replacing the discrete variables with continuous
variables and extend the objective function to the continuous domain. Gillenwater et al. (2012) proposed a
continuous extension that is efficiently computable and differentiable:

F̂ (w) = log
∑

x

∏
i∈x

wi

∏
i ̸∈x

(1 − wi) exp(f(x)), w ∈ [0, 1]N . (4)

We use the following theorem from Gillenwater et al. (2012) to construct LDP P :

3It seems likely that the use of grid codes for abstraction in human cognition requires a considerably greater number of states
S than that used by the rodent for sensory encoding. However, given exponential scaling, the total number of frequencies is
expected to remain low, increasing as a logarithm of S.
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Theorem 2.1. For a positive semidefinite matrix V and w ∈ [0, 1]N :∑
x

∏
i∈x

wi

∏
i ̸∈x

(1 − wi) det(Vx) = det(diag(w)(V − I) + I) (5)

We propose an attention mechanism that uses LDP P to attend to subsets of grid embeddings for further
processing. Algorithm 1 describes the training procedure with DPP-A which consists of two steps, using
LDP P as the first step. This step maximizes the objective function:

F̂ (w, V , Nf , Np) =
Nf∑

f=1
log det(diag(wf )(Vf − I) + I) (6)

using stochastic gradient ascent for NEDP P
epochs, which is equivalent to minimizing LDP P , as LDP P =

−F̂ (w, V , Nf , Np). It involves attending to grid embeddings that exhibit the greatest within frequency
variance but are least redundant (that is, that are least also pairwise uncorrelated) over the training data.
This is achieved by maximizing the determinant of the covariance matrix over the within frequency grid
embeddings of the training data, which is obtained by applying log on both sides of the Theorem 2.1, and in
our case x refers to grid cells within a particular frequency. Here w are the attention weights corresponding
to each grid cell, and Nf is the number of distinct frequencies. The matrix V captured a measure of
the covariance of the grid embeddings over the training region. We used the synth_kernel function 4 to
construct V , where in our case m are the variances of the grid cell representations S computed over the
training region M , N is the number of grid cells and wm, b are hyperparameters with values of 1 and 0.1
respectively. The dimensionality of V was Nf Np × Nf Np(900 × 900). wf were the attention weights of
the grid cells belonging to the fth frequency , so wf = w[fNp : (f + 1)Np], where Np was the number
of phases for each frequency. Vf = V [fNp : (f + 1)Np, fNp : (f + 1)Np] was the restriction of V to the
grid embeddings for fth frequency, so it captured the covariance of the grid embeddings belonging to the
fth frequency. Equation 6 which involved summation of the logarithm of the determinant of the weighted
covariance matrix of grid cells within each frequency, over Nf frequencies was used to compute the negative of
LDP P . Maximizing F̂ gave the approximate maximum within frequency log determinant for each frequency
f ∈ [1, Nf ], which we denote for the fth frequency as F̂f . In the second step of the training procedure,
we used the fmaxDP P

grid cell frequency, where fmaxDP P
= arg maxf∈[1,Nf ] F̂f . In other words, we used

the grid embeddings for grid cells belonging to the frequency which had the maximum within-frequency log
determinant at the end of the first step, which we find are best at capturing the relational structure across
the training and testing data, thereby promoting out-of-distribution generalization. In this step, we trained
the inference module minimizing Ltask over NEtask

epochs.

2.2.3 Inference module

We implemented the inference module R in two forms, one using an LSTM (Hochreiter & Schmidhuber,
1997) and the other using a transformer (Vaswani et al., 2017) architecture. Separate networks were trained
for the analogy and arithmetic tasks using each form of inference module. For each task, the attended grid
embeddings of each stimuli obtained from the DPP-A process, were provided to R as its inputs. For the
arithmetic task, we also concatenated a one-hot tensor, before feeding to R that specified which computation
to perform (addition or multiplication). As proposed by Hill et al. (2019), we treated both the analogy and
arithmetic tasks as scoring (i.e., multiple choice) problems. For each analogy, the inference module was
presented with multiple problems, each consisting of three stimuli, A, B, C, and a set containing D (the
correct completion) and six foil completions. For each instance of the arithmetic task, it was presented
with two stimuli, A, B, and a set containing C (the correct completion) and six foil completions. A linear
output layer was used to generate a score for the candidate completions for each problem. Stimuli were
presented sequentially for R constructed using an LSTM, and positionally coded (Kazemnejad, 2019) if it

4https://github.com/insuhan/fastdppmap/blob/db7a28c38ce654bdbfd5ab1128d3d5910b68df6b/test_greedy.m#L123.
S need not be a square matrix in our case, whose second dimension M was the size of the training region. L_kernel is same
as V .
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Algorithm 1 Training with DPP-A
Parameters: inference module R, attention weights w
Hyperparameters: number of frequencies Nf , number of phases Np, number of epochs optimizing DPP
attention NEDP P

, number of epochs optimizing task loss NEtask
, number of batches per epoch Nb

Inputs: covariance matrix V , grid code inputs x and targets y for all training problems

Initialize w, R
for i = 1 to NEDP P

do
for j = 1 to Nb do

F̂ (w, V , Nf , Np) =
Nf∑

f=1
log det(diag(wf )(Vf − I) + I)

LDP P = -F̂ (w, V , Nf , Np)
Update w

end for
end for
F̂f∈[1,Nf ] = log det(diag(wf )(Vf − I) + I)
fmaxDP P

= arg maxf∈[1,Nf ] F̂f

for i = 1 to NEtask
do

for j = 1 to Nb do
ŷ = R(xf=fmaxDP P

)
Ltask = cross-entropy(ŷ, y)
Update R

end for
end for

used a transformer. The seven scores (one for the correct completion and for six foil completions) were
normalized using a softmax function, such that higher score would correspond to higher probablity and vice
versa and the probabilities sum to 1. The inference module was trained using the task specific cross entropy
loss (Ltask = cross-entropy) between the softmax-normalized scores and the index for the correct completion
(target).

The network that used an LSTM in the inference module had a single layer of 512 hidden units. The hidden
and cell state of the LSTM was reinitialized at the start of each sequence for each candidate completion.
The network that used a transformer in the inference module had 6 layers, each of which had 8 heads
and a dimensionaltiy of 512. We projected the data into 128 dimensions to be more easily divisible by the
number of heads, followed by layer normalization (Ba et al., 2016). We added a learnable positional encoding
to the projected input sequence of attended grid code embeddings, concatenated a learned CLS (short for
"classification") token (analogous to the CLS token in Devlin et al. (2018)), followed by a transformer encoder.
We took the transformed value of the CLS token, and passed it to a linear layer with 1 output unit to generate
a score for each candidate completion. This procedure was repeated for each candidate completion.

3 Related work

A body of recent computational work has shown that representations similar to grid cells can be derived
using standard analytical techniques for dimensionality reduction (Dordek et al., 2016; Stachenfeld et al.,
2017), as well as from error-driven learning paradigms (Cueva & Wei, 2018; Banino et al., 2018; Whittington
et al., 2020; Sorscher et al., 2022). Previous work has also shown that grid cells emerge in networks trained
to generalize to novel location/object combinations, and support transitive inference (Whittington et al.,
2020). Here, we show that grid cells enable strong OOD generalization when coupled with the appropriate
attentional mechanism. Our proposed method is thus complementary to these previous approaches for
obtaining grid cell representations from raw data.
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In the field of machine learning, DPPs have been used for supervised video summarization (Gong et al.,
2014), diverse recommendations (Chen et al., 2018), selecting a subset of diverse neurons to prune a neural
network without hurting performance (Mariet & Sra, 2015), and diverse minibatch attention for stochastic
gradient descent (Zhang et al., 2017). Recently, Mariet et al. (2019) generated approximate DPP samples
by proposing an inhibitive attention mechanism based on transformer networks as a proxy for capturing
the dissimilarity between feature vectors, and Perez-Beltrachini & Lapata (2021) used DPP-based attention
with seq-to-seq architectures for diverse and relevant multi-document summarization. To our knowledge,
however, DPPs have not previously been combined with the grid codes that we employ here, and have not
been used to enable OOD generalization.

Various approaches have been proposed to prevent deep learning systems from overfitting, and enable them
to egeneralize. A commonly employed technique is weight decay (Krogh & Hertz, 1992). Srivastava et al.
(2014) proposed dropout, a regularization technique which reduces overfitting by randomly zeroing units from
the neural network during training. Recently, Webb et al. (2020) proposed temporal context normalization
(TCN) in which a normalization similar to batch normalization (Ioffe & Szegedy, 2015) was applied over
the temporal dimension instead of the batch dimension. However, unlike these previous approaches, the
method reported here achieves nearly perfect OOD generalization when operating over the appropriate
representation, as we show in the results. Our proposed method also has the virtue of being based on a well
understood, and biologically plausible, encoding scheme (grid cells).

4 Experiments

4.1 Experimental details

For each task, the sequence of stimuli for a given problem was encoded as grid codes (see Section 2.2.1), that
were then modulated by DPP-A (see Section 2.2.2), and passed to the inference module R (see Section 2.2.3).
We trained 3 networks using each type of inference module. For networks using an LSTM in the inference
module, we trained each network for number of epochs for optimizing DPP attention NEDP P

= 50, number
of epochs for optimizing task loss NEtask

= 50, on analogy problems, and for NEDP P
= 500, NEtask

= 500,
on arithmetic problems with a batch size of 256, using the ADAM optimizer (Kingma & Ba, 2014), and a
learning rate of 1e−3. For networks using a transformer in the inference module, we trained with a batch
size of 128 on analogy with a learning rate of 5e−4, and on arithmetic problems with a learning rate of 5e−5.
More details can be found in Appendix 7.1.

4.2 Comparison models

To evaluate how grid code embeddings coupled with DPP-A compares with other architectures and ap-
proaches to generalization, and the extent to which each of these components contributed to performance
of the model, we compared it with several alternative models for performing the analogy and arithmetic
tasks. First we compared it with the temporal context normalization (TCN) model (Webb et al., 2020) (see
Section 3), but modified so as to use grid code embeddings as input. We passed the grid embedding for each
input through a shared feedforward encoder which consisted of two fully connected layers with 256 units per
layer. ReLU nonlinearities were used in both the layers. The final embedding was generated with a linear
layer of 256 units. TCN was applied to these embeddings and then passed as a sequence for each candidate
completion to the inference module. This implementation of TCN involved a learned encoder on top of the
grid code embeddings, so it is closely analogous to the original TCN.

Next, we compared our model to one that used variational dropout (Gal & Ghahramani, 2016), which
is shown to be more effective in generalization compared to naive dropout (Srivastava et al., 2014). We
randomly sampled a dropout mask (50% dropout), zeroing out the contribution of some of the grid codes in
the input to the inference module. We then use that locked dropout mask for every time step in the sequence.
We also compared DPP-A to a model that had an additional penalty (L1 regularization) proportional to the
absolute sum of the attention weights w along with the task-specific loss. We experimented with different
values of λ, which controlled the strength of the penalty relative to the cross entropy loss. We report accuracy
values for λ that achieved the best performance on the validation set. Accuracy values for various λs are
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provided in the Appendix 7.7. Dropout and L1 regularization were chosen as a proxy for DPP-A and hence
we used the same input data for fair comparison. Finally, we compared to a model that used the complete
grid codes, i.e. no DPP-A.

5 Results

5.1 Analogy

We first present results on analogy task for two types of testing data, translation and scaling using two
types of inference module, LSTM and transformer. We trained 3 networks for each method and report mean
accuracy alongwith standard error of the mean. Figure 3 shows the results for the analogy task using an
LSTM in the inference module. The left panel shows results for the translation regime, and the right panel
shows results for the scaling regime. Both plots show accuracy on the training and validation sets, and on
a series of 9 (increasingly distant) OOD generalization test regions. DPP-A (shown in blue) achieves nearly
perfect accuracy on all of the test regions, considerably outperforming the other models.

Figure 3: Results on analogy on each region for translation and scaling using LSTM in the inference module.

For the case of translation, using all the grid codes with no DPP-A (shown in purple) led to the worst
OOD generalization performance, overfitting on the training set. Locked dropout (denoted by green) and L1
regularization (denoted by red) reduced overfitting and demonstrated better OOD generalization performance
than no DPP-A but still performed considerably worse than DPP-A. For the case of scaling, locked dropout
and L1 regularization performed slightly better than TCN, achieving marginally higher test accuracy, but
DPP-A still substantially outperformed all other models, with a nearly 70% improvement in average test
accuracy.

To test the generality of grid embedding and DPP-A across network architectures, we also tested a trans-
former (Vaswani et al., 2017) in place of the LSTM in the inference module. Previous work has suggested
that transformers are particularly useful for extracting structure in sequential data and has been used for
OOD generalization (Saxton et al., 2019). Figure 4 shows the results for the analogy task using a trans-
former in the inference module. With no explicit attention (no DPP-A) over the grid codes (show in orange),
the transformer did poorly on the analogies on the test regions. This suggests that simply using a more
sophisticated architecture with standard forms of attention is not sufficient to enable OOD generalization
based on grid codes. With DPP-A (shown in blue), the OOD generalization performance of the transformer
is nearly perfect for both translation and scaling. These results also demonstrate that grid code embedding
coupled with DPP-A can be exploited for OOD generalization effectively by different architectures.
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Figure 4: Results on analogy on each region for translation and scaling using transformer in the inference
module.

5.2 Arithmetic

We next present results on arithmetic task for two types of operations, addition and multiplication using
two types of inference module, LSTM and transformer. We trained 3 networks for each method and report
mean accuracy alongwith standard error of the mean.

Figure 5: Results on arithmetic on each region using LSTM in the inference module.

Figure 5 shows the results for arithmetic problems using an LSTM in the inference module. The left panel
shows results for addition problems, and the right panel shows results for multiplication problems. DPP-A
achieves higher accuracy for addition than multiplication on the test regions. However, in both cases DPP-A
significantly outperforms the other models, achieving nearly perfect OOD generalization for addition, and
65% accuracy for multiplication, compared with under 20% accuracy for all the other models. We found
that grid embeddings obtained after the first step in Algorithm 1 aren’t able to fully preserve the relational
structure for multiplication problems on the test regions (more details in Appendix 7.2), but still it affords
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Figure 6: Results on arithmetic on each region using transformer in the inference module.

superior capacity for OOD generalization than any of the other models. Thus, while it does not match the
generalizability of a genuine algorithmic (i.e., symbolic) arithmetic function, it may be sufficient for some
tasks (e.g., approximate multiplication ability in young children (Qu et al., 2021)).

Figure 6 shows the results for arithmetic problems using a transformer in the inference module. With no
DPP-A over the grid codes the transformer did poorly on addition and multiplication on the test regions,
achieving around 20-30% accuracy. With DPP-A, the OOD generalization performance of transformer show a
pattern similar to that for analogy: it is nearly perfect for addition and, though not as good on multiplication,
nevertheless show approximately 40% better performance than the transformer multiplication.

5.3 Ablation study

To determine the individual importance of the grid code embeddings and the DPP-A attention objective,
we carried out several ablation studies. First, to evaluate the importance of grid code embeddings, we
analyzed the effect of DPP-A with non-grid code embeddings, using either one-hot or smoothed one-hot
embeddings with standard deviations of 1, 10, and 100, each passed through a learned feedforward encoder,
which consisted of two fully connected layers with 1024 units per layer, and ReLU nonlinearities. The final
embedding was generated with a fully connected layer with 1024 units and sigmoid nonlinearity. Since these
embeddings don’t have a frequency component, the training procedure with DPP-A consisted of only one
step: minimizing the loss function L = Ltask − λ ∗ F̂ (w, V ). We tried different values of λ (0.001, 0.01, 0.1,
1, 10, 100, 1000, 10000). For each type of embedding (one-hots and smoothed one-hots with each value of
λ), we trained 3 networks and report for the model that achieved best performance on the validation set.
Note that, given the much higher dimensionality and therefore memory demands of embeddings based on
one-hots and smoothed one-hots, we had to limit the evaluation to a subset of the total space, resulting in
evaluation on only two test regions (i.e., K ∈ [1, 3]).

Figure 7 shows the results for the analogy task using an LSTM in the inference module. The average accuracy
on the test regions for translation and scaling using smoothed one-hots passed through an encoder (shown in
green) is nearly 30% better than simple one-hot embeddings passed through an encoder (shown in orange),
but both still achieve significantly lower test accuracy than grid code embeddings which support perfect
OOD generalization.

With respect to the importance of the DPP-A, we note that the simulations reported earlier show that
replacing the DPP-A mechanism with either other forms of regularization (dropout and L1 regularization;
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Figure 7: Results on analogy on each region using DPP-A, an LSTM in the inference module, and different
embeddings (grid codes, one-hots, and smoothed one-hots passed through a learned encoder) for translation
(left) and scaling (right). Each point is mean accuracy over three networks, and bars show standard error
of the mean.

Figure 8: Results on analogy on each region using different embeddings (grid codes, and one-hots or smoothed
one-hots with and without an encoder) and an LSTM in the inference module, but without DPP-A, TCN,
L1 Regularization, or Dropout for translation (left) and scaling (right).

see Section 4.2) or a transformer (Section 5.1 for analogy and Section 5.2 for arithmetic tasks) failed to achieve
the same level of OOD generalization as the network that used DPP-A. The results using a transformer are
particularly instructive, as that incorporates a powerful mechanism for learned attention, but, even when
provided with grid code embeddings, failed to produce results comparable to DPP-A, suggesting that the
latter provides a simple but powerful form of attention objective, at least when used in conjunction with
grid code embeddings.

Finally, for completeness, we also carried out a set of simulations that examined the performance of net-
works with various embeddings (grid codes, and one-hots or smoothed one-hots with or without a learned
feedforward encoder), but no attention or regularization (i.e., neither DPP-A, transformer, nor TCN, L1
Regularization, or Dropout). Figure 8 shows the results for the different embeddings. For translation (left),
the average accuracy over the test regions using grid codes (shown in blue) is nearly 25% more compared
to other embeddings, which all yield performance near chance (∼ 15%). For scaling (right), although other
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embeddings achieve higher performance than chance (except smoothed one-hots), they still achieve lower
test accuracy than grid codes.

6 Discussion and future directions

We have identified how particular properties of processing observed in the brain can be used to achieve
strong OOD generalization, and introduced a two-component algorithm to promote OOD generalization in
deep neural networks. The first component is a structured representation of the training data, modeled
closely on known properties of grid cells – a population of cells that collectively represent abstract position
using a periodic code. However, despite their intrinsic structure, we find that grid code and standard error-
driven learning alone are insufficient to promote OOD generalization, and standard approaches for preventing
overfitting offer only modest gains. This is addressed by the second component, using DPP-A to implement
attentional regularization over the grid code. DPP-A allows only a relevant and diverse subset of cells to
influence downstream computation in the inference module using the statistics of the training data. For
proof of concept, we started with two challenging cognitive tasks (analogy and arithmetic), and showed that
the combination of grid code and DPP-A promotes OOD generalization across both translation and scale
when incorporated into common architectures (LSTM and transformer).

The current approach may be seen to be limited by the fact that we derive the grid codes from known
properties of neural systems, rather than obtaining these codes directly from real-world data. Here, we are
encouraged by the body of work providing evidence for grid-like codes in the hidden layers of neural networks
in a variety of task contexts and architectures (Wei et al., 2015; Cueva & Wei, 2018; Banino et al., 2018;
Whittington et al., 2020). This suggests reason for optimism that DPP-A may promote strong generaliza-
tion in cases where grid-like codes naturally emerge: for example, navigation tasks (Banino et al., 2018) and
reasoning by transitive inference (Whittington et al., 2020). Integrating our approach with structured rep-
resentations acquired from high-dimensional, naturalistic datasets remains a critical next step which would
have significant potential for broader future practical applications. So too does application to more complex
transformations beyond translation and scale, such as rotation.
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7 Appendix

7.1 More experimental details

The size of the training region, M was 100. For analogy task, we used 653216 training samples, 163304
validation samples, and 20000 testing samples for each of the nine regions. For arithmetic task, we used
80000 training samples, 20000 validation samples, and 20000 testing samples for each of the nine regions
with equal number of addition and multiplication problems. We used the PyTorch library (Paszke et al.,
2017) for all experiments. For each network, the training epoch that achieved the best validation accuracy
was used to report performance accuracy for the training stimulus sets, validation sets (held out stimuli from
the training range), and OOD generalization test sets (from regions beyond the range of the training data).

7.2 Why is OOD generalization performance worse for the multiplication task?

In an effort to understand why DPP-A achieved around 65% average test accuracy on multiplication com-
pared to nearly perfect accuracy for addition and analogy task, we analyzed the distribution of the grid
embeddings for the grid cells belonging to the frequency which had the maximum within-frequency deter-
minant at the end of the first step in Algorithm 1. More specifically for A, B and the correct answer C,
we analyzed the distribution of each grid cell for the training and the nine test regions. Note that since the
total number of grid cells was 900 and there were nine frequencies, the dimension of the grid embeddings
corresponding to fmaxDP P

grid cell frequency was 100. To quantify the similarity between training and
the test distributions, we computed cosine distance ( 1 - cosine similarity), and averaged it over the 100
dimensions and nine test regions. We found that the average cosine distance is 5x greater for multiplication
than addition problem (0.0002 for addition: 0.001 for multiplication). In this respect, grid coding does
not perfectly preserve relational structure of the multiplication problem, which we would expect to limit
DPP-A’s OOD generalization ability in that task-domain.

7.3 Ablation study on choice of frequency

Figure 9: Results on analogy on each region using LSTM in the inference module for choosing top K
frequencies with F̂f in Algorithm 1. Results show mean accuracy on each region averaged over 3 trained
networks along with errorbar (standard error of the mean).

7.4 Baseline using dynamic attention across frequencies
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Figure 10: Results on analogy on each region for translation and scaling using transformer in the inference
module.

7.5 Ablation study on arithmetic task

Figure 11: Results on arithmetic with different embeddings (with DPP-A) using LSTM in the inference
module. Results show mean accuracy on each region averaged over 3 trained networks along with errorbar
(standard error of the mean).
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Figure 12: Results on arithmetic with different embeddings (without DPP-A, TCN, L1 Regularization, or
Dropout) using LSTM in the inference module. Results show mean accuracy on each region averaged over
3 trained networks along with errorbar (standard error of the mean).

Figure 13: Results on arithmetic for increasing number of grid cell frequencies Nf on each region using LSTM
in the inference module. Results show mean accuracy on each region averaged over 3 trained networks along
with errorbar (standard error of the mean).

7.6 Regression formulation

We also tried formulating the analogy and arithmetic tasks as regression instead of classification via a scoring
mechanism. For DPP-A, the inference module was trained to generate the grid embeddings for grid cells
belonging to the fmaxDP P

frequency, which had the maximum within-frequency determinant at the end of
first step in Algorithm 1 for the correct completion, given as input the fmaxDP P

frequency grid embeddings
for A, B, C for the analogy task and A, B for the arithmetic task. A linear layer with 100 units and sigmoid
activation was used to generate the output of the inference module and was trained to minimize the mean
squared error with the fmaxDP P

frequency grid embeddings of the correct completion. We compared DPP-A
with a version that didn’t use the attentional objective (no DPP-A), where the inference module was trained
to generate the grid embeddings for all the frequencies, but was evaluated on only the fmaxDP P

frequency
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Figure 14: Results for regression on analogy using LSTM in the inference module. Results show mean
squared error on each region averaged over 3 trained networks along with errorbar (standard error of the
mean).

Figure 15: Results for regression on arithmetic on each region using LSTM in the inference module. Results
show mean squared error on each region averaged over 3 trained networks along with errorbar (standard
error of the mean).

grid embeddings for fair comparison with the DPP-A version. Figure 14 shows the results for the analogy
task using an LSTM in the inference module. For both the translation (left) and scaling (right) regimes,
DPP-A achieves nearly zero mean squared error on all the test regions, considerably outperforming the no
DPP-A which achieves much higher error. Figure 15 shows the results for arithmetic problems using an
LSTM in the inference module. For addition problems, shown on the left, DPP-A achieves nearly zero mean
squared error on the test regions. For multiplication problems, shown on the right, DPP-A achieves lower
mean squared error on the test regions, 0.11, compared to no DPP-A which achieves around 0.17.
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7.7 Effect of L1 Regularization strength (λ)

Figure 16: Results on analogy for L1 regularization for various λs for translation and scaling using LSTM in
the inference module. Results show mean accuracy on each region averaged over 3 trained networks along
with errorbar (standard error of the mean).

Figure 17: Results on arithmetic for L1 regularization for various λs using LSTM in the inference module.
Results show mean accuracy on each region averaged over 3 trained networks along with errorbar (standard
error of the mean).
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7.8 Ablation on DPP-A

Figure 18: Results on analogy for one step DPP-A over the complete grid codes for various λs for translation
and scaling using LSTM in the inference module. Results show mean accuracy on each region averaged over
3 trained networks along with errorbar (standard error of the mean).

Figure 19: Results on analogy for one step DPP-A within frequencies for various λs for translation and
scaling using LSTM in the inference module. Results show mean accuracy on each region averaged over 3
trained networks along with errorbar (standard error of the mean).

The proposed DPP-A method (Algorithm 1) consists of two steps with LDP P in the first step and Ltask in
the second step. We considered two ablation experiments which consists of a single step. In one case we
maximized the objective function, F̂ (w, V ) = log det(diag(w)(V − I) + I), over the complete grid codes
(instead of summing F̂ corresponding to grid codes from each frequency independently as done in the first
step of Algorithm 1), using stochastic gradient ascent, along with minimizing Ltask, which would use all the
attended grid codes (instead of using fmaxDP P

frequency grid codes as done in the second step of Algorithm
1). So total loss, L = Ltask − λ ∗ F̂ (w, V ). We refer to this ablation experiment as one step DPP-A over the
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complete grid codes. The results on analogy for this ablation experiment is shown in Figure 18. We see that
the accuracy on test analogies for translation for various λs are around 30-60%, and for scaling around 20-
40%, which is much lower than the nearly perfect accuracy achieved by the proposed DPP-A method. In the

other case we maximized the objective function F̂ (w, V , Nf , Np) =
Nf∑

f=1
log det(diag(wf )(Vf − I) + I), using

stochastic gradient ascent, which is same as LDP P in the first step of Algorithm 1, along with minimizing
Ltask, which would use all the attended grid codes. So total loss, L = Ltask − λ ∗ F̂ (w, V ). We refer to this
ablation experiment as one step DPP-A within frequencies. As shown in Figure 19, the accuracy on test
analogies for both translation and scaling for various λs are in a similar range to one step DPP-A over the
complete grid codes, and is much lower than the nearly perfect accuracy achieved by the proposed DPP-A
method.
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