
Abstractors: Transformer Modules for
Symbolic Message Passing and Relational Reasoning

Awni Altabaa1 Taylor Webb2 Jonathan Cohen3 John Lafferty4

May 29, 2023

Abstract: Reasoning in terms of relations, analogies, and abstraction is a hallmark of human
intelligence. An active debate is whether this relies on the use of symbolic processing or can
be achieved using the same forms of function approximation that have been used for tasks
such as image, audio, and, most recently, language processing. We propose an intermediate
approach, motivated by principles of cognitive neuroscience, in which abstract symbols can
emerge from distributed, neural representations under the influence of an inductive bias for
learning that we refer to as a “relational bottleneck.” We present a framework that casts this
inductive bias in terms of an extension of Transformers, in which specific types of attention
mechanisms enforce the relational bottleneck and transform distributed symbols to implement
a form of relational reasoning and abstraction. We theoretically analyze the class of relation
functions the models can compute and empirically demonstrate superior sample-efficiency on
relational tasks compared to standard Transformer architectures.

1. Introduction

Relational learning refers to the inference of rules that operate in terms of relationships between
objects, independent of how the objects may be represented. Examples of common relations are
“less than” applied to natural numbers, “same color as” applied to visual objects, and “friend of”
applied to social relationships. Such relations are important for basic computational functions. For
example, consider the task of sorting objects. A standard 52-card deck of playing cards has 13
ranks in each of four suits: clubs, diamonds, hearts, and spades. The cards might be sorted using
the relation that takes the suit as the primary attribute, and the rank as the secondary attribute; this
would be the typical way of ordering cards in many games. If a sorting algorithm is learned that
depends only on the relations between objects, it can in principle be applied in a new domain with
little or no modification.

Reasoning in terms of relations and analogies is a hallmark of human intelligence (Holyoak,
2012; Snow et al., 1984). Indeed, the Wisconsin card sorting task (Berg, 1948) has been used for
decades as an indicator of decision making function in prefrontal cortex (Monchi et al., 2001).
Recognizing the importance of this capability, which is largely separate from function approxima-
tion for sensory tasks such as image and audio processing, machine learning research has explored
several novel frameworks for relational learning (Barrett et al., 2018; Battaglia et al., 2018; Graves
et al., 2014; Mondal et al., 2023; Pritzel et al., 2017; Santoro et al., 2017; Webb et al., 2021;
Whittington et al., 2020).

1Department of Statistics and Data Science, Yale University; awni.altabaa@yale.edu. 2Department of Psychology,
UCLA; taylor.w.webb@gmail.com. 3Department of Psychology and Princeton Neuroscience Institute, Princeton Uni-
versity; jdc@princeton.edu. 4Department of Statistics and Data Science, Wu Tsai Institute, Institute for Foundations
of Data Science, Yale University; john.lafferty@yale.edu.

1

ar
X

iv
:2

30
4.

00
19

5v
2

 [
st

at
.M

L
]

 2
5

M
ay

 2
02

3

In this paper we propose a framework that casts relational learning in terms of Transformers. The
success of Transformers lies in combining the function approximation capabilities of deep learn-
ing with the use of attentional mechanisms to support richly context-sensitive processing (Kerg
et al., 2020; Vaswani et al., 2017; Wolf et al., 2020). However, it is clear that Transformers are
missing core capabilities required for modeling human thought (Mahowald et al., 2023). In partic-
ular, they lack mechanisms required to emulate forms of flexibility and efficiency exhibited by the
human brain, including an ability to support analogy and abstraction. While large language mod-
els show a surprising ability to complete some analogies (Webb et al., 2022), this ability emerges
implicitly after processing vast amounts of data. The algorithmic challenge is to provide ways of
binding domain-specific information to low dimensional, abstract representations that can be used
to compute a given function in any setting for which it is relevant, based on limited data.

Our approach is motivated by a type of inductive bias for relational learning architectures we
call the “relational bottleneck,” which is motivated by principles of cognitive neuroscience that
shed light on the brain subsystems involved when natural intelligence shows an ability to flex-
ibly generalize abstract structure across domains of processing. In particular, the framework of
complementary learning systems (Kumaran et al., 2016; McClelland et al., 1995) describes two
distinct types of neural mechanisms for learning and memory around which the brain is organized,
implementing a tradeoff between slow, incremental forms of learning required to encode stable sta-
tistical structure present in the environment (semantic memory), and the ability to rapidly encode
and remember novel associations (episodic memory).

Recently, it has been proposed that episodic memory may also serve to implement a relational
bottleneck, by allowing components of semantic memory that represent abstract functions to be
separated from those responsible for processing domain-specific information, while allowing the
two types of components to be coupled through rapid binding and similarity-based retrieval of
representations (Webb et al., 2021). This “relational bottleneck” imposes an inductive bias that
constrains the flow of information from sensory or motor subsystems to reasoning and decision
making subsystems, by restricting this information to relations, as computed through inner prod-
ucts between distributed representations. In this paper we present a framework that recasts this
inductive bias in terms of an extension of Transformers, in which specific types of attention mech-
anisms enforce the relational bottleneck. This creates a potentially powerful combination of deep
learning and relational learning that implements a form of symbolic processing, enabling abstrac-
tion and generalization from limited data.

2. The Abstractor Framework

At a high level, the primary function of an Abstractor is to compute abstract relational features of
its inputs.1 That is, given a set or sequence of input objects o1, . . . , om, the relational Abstractor
learns to model a relation r(·, ·) and computes a function on the set of pairwise relations between
objects {r(oi, oj)}ij . The relations and the computations on them are learned to carry out a specific
prediction task. This learning is often end-to-end, but, crucially, the Abstractor framework naturally
supports modular learning.

1In this paper, we will tend to use the name ‘Abstractor’ to refer to both the module, the framework, and models
which contain the Abstractor module as a main component.

2

2.1. Relational symbolic message-passing

At the core of Abstractors is an operation we refer to as relational symbolic message-passing. The
input to this operation is a relation tensor R = [r(oi, oj)]

m
i,j=1, where r(oi, oj) ∈ Rdr is a vector

describing the relation between object oi and object oj . We will come back to how an Abstractor
models pairwise relations and computes the relation tensor in the next subsection.

The starting point of symbolic message-passing is a set of learnable symbols s1, . . . , sm ∈ Rds ,
where the hyperparameter ds is the dimension of the symbolic vectors. We call these parameters
symbols because each of them references (or “is bound to”) a particular object, but they are in-
dependent of the values of these objects. That is, the ith symbol references the ith object, but the
value of si is independent of the value of oi. The use of these learned, input-independent symbols
is how symbolic message-passing achieves its abstraction.

In relational symbolic message-passing, we perform message-passing on these learned symbolic
parameters according to the relation tensor R. In general, this message-passing operation can be
described as a set-valued function of the form

si ← Update
(
si, {(R[i, j], sj)}j∈[m]

)
, i = 1, . . . ,m. (2.1)

That is, the value of the ith symbol is updated as a function of the set of tuples (R[i, j], sj) of
the relations with all other objects and the symbols of these objects. The symbols sj are naturally
viewed as values on the nodes of a graph, and the relations R[i, j] are naturally viewed as weights
on the edges. A simple but important special case of this is linear message-passing

si ←
m∑
j=1

R[i, j]sj, i = 1, . . . ,m (2.2)

In the above, if dr > 1, the operation should be read as

R[i, j]sj = (R[i, j, 1]sj, . . . , R[i, j, dr]sj) ∈ Rds×dr ,

where dr is the dimension of the relation. That is, the result is concatenated.

Following message-passing, each updated symbol si can be passed through a feedforward neural
network ϕ : Rds×dr → Rda to compute a non-linear function of the output. This also controls the
dimension of the symbols so that it doesn’t grow by a factor of H with each layer (e.g., take
da = ds). Empirically, a residual connection and layer normalization may be useful.

This message-passing operation can be repeated multiple times to iteratively update the symbolic
vectors. The output of relational symbolic message-passing is the set of symbols A at the end of
this sequence of message-passing operations. This is summarized in Algorithm 1.

2.2. Multi-head relations and relational cross-attention

Next, we turn our attention to how the Abstractor models pairwise relations and computes the
relation tensor R ∈ Rm×m×dr .

3

Algorithm 1: Symbolic Message-Passing
Input : Relation tensor: R ∈ Rm×m×dr

Hyperparameters : L, ds, da, hyperparameters of feedforward networks
Learnable parameters : symbols S = (s1, . . . , sm) ∈ Rds×m, feedforward networks ϕ(1), . . . , ϕ(L)

Output : Abstracted sequence: A = (a1, . . . , am) ∈ Rda×m

(a1, . . . , am)← (s1, . . . , sm)
for l← 1 to L do

ai ←
∑n

j=1 R[i, j]aj , i = 1, . . . ,m

ai ← ϕ(l)(ai), i = 1, . . . ,m
end

The inner product operation is a natural way to capture notions of relations and similarity. In
Euclidean space, inner products capture the geometric alignment between vectors. Similarly, for
arbitrary objects with vector representations, inner products between these vector representations
can capture relations between these objects.

We model pairwise relations as inner products between appropriately encoded (or ‘filtered’)
object representations. In particular, we model the pairwise relation function r(·, ·) ∈ Rdr in terms
dr learnable ‘left encoders’ ϕ1, . . . , ϕdr , and dr ‘right encoders’ ψ1, . . . , ψdr ,

r(x, y) =

 ⟨ϕ1(x), ψ1(y)⟩
...

⟨ϕdr(x), ψdr(y)⟩

 ∈ Rdr . (2.3)

In general, ϕi, ψj can be any learnable maps. These transformations can be thought of as re-
lational filters. They extract a particular attribute of the objects such that an inner product of the
transformed objects indicates the alignment or similarity along this attribute. Having several dif-
ferent filters allows for modeling rich multi-dimensional relations. This is one notable advantage
of this formulation over the CoRelNet model (Kerg et al., 2022), which processes a 1-dimensional
similarity matrix as input to a multi-layer perceptron. In the next section, we analyze the class of
functions that the multi-head relation module can model.

In order to promote weight sharing, we focus our attention to inner product relations of the form

r(x, y) =

〈
W

(1)
1 ϕ(x),W

(1)
2 ϕ(y)

〉
...〈

W
(dr)
1 ϕ(x),W

(dr)
2 ϕ(y)

〉
 ∈ Rdr , (2.4)

where ϕ is a common non-linear map, and W (i)
1 ,W

(i)
2 are projection matrices for each dimension

of the relation. For general functions ϕ, this class of functions is no smaller than the one above
(e.g., take ϕ to be the concatenation of ϕ1, . . . , ϕdr , ψ1, . . . , ψdr and W (i)

1 ,W
(i)
2 to be the projection

matrices which extract the appropriate components), but does enable greater weight sharing.

4

We refer to this operation as Multi-Head Relation (Algorithm 2). In our implementation, compu-
tation of the inner product is done efficiently with Einstein summation. Also, we add a hyperparam-
eter to control whether the relations are modeled as symmetric or asymmetric (as in the description
above). If the relations are to be modeled as symmetric, we set W (i)

1 = W
(i)
2 . For certain tasks

where relations may be naturally symmetric, this may be a useful inductive bias which improves
sample-efficiency (e.g., see the discussion in Kerg et al. (2022)).

Algorithm 2: Multi-Head Relation (MHR) module
Input : sequence of objects: X = (x1, . . . , xm) ∈ Rd

Hyperparameters : Dimension of relation dr, Projection dimension dp, dimension of embedding de

Learnable parameters : projection matrices W (i)
1 ,W

(i)
2 ∈ Rdp×de , i = 1, . . . , dr, embedder network

ϕ : Rd → Rde

Output : Relation tensor R ∈ Rm×m×dr

for i, j ← 1 to m do
for k ← 1 to dr do

R[i, j, k]← ⟨W (k)
1 ϕ(xi),W

(k)
2 ϕ(xj)⟩

end
end

2.3. The Abstractor module: Putting it all together

The above two sections provide a complete description of relational symbolic message-passing
and computing relations via multi-head relation modules. These are the two main components of
the Abstractor module.

The initial abstract state is S = (s1, . . . , sm) with abstract symbols sj that are task-dependent
but input-independent, trainable using backpropagation. The multi-head relation module learns re-
lations among the input objects and uses those relations to transform the abstract state. Importantly,
each ‘head’ of the multi-head relation module encode learned relations and attributes which can be
reused across tasks.

Only relational information, computed through inner products, is used to transform the abstract
variables; no information about the individual object representations themselves is directly ac-
cessed by the abstract side. This enables greater out-of-distribution generalization ability since it
allows for the representations of the objects to change as long as the transformed inner products
are approximately preserved (see Section 4 for experiments exploring this). This is a crucial com-
ponent of the idea of the relational bottleneck.

Algorithm 3 provides an algorithmic description of the archetypical Abstractor.

Note that the relation tensor output by the multi-head relation module is processed with an
activation function σrel. Depending on the task, one good choice for this is the softmax activation
function. This normalizes the message-passing operation such that each abstract symbol is updated
as a convex combination of the other symbols based on the relation tensor. It is important to note
that this causes the computed relation between two objects to depend also on the relations with

5

Algorithm 3: Abstractor
Input : sequence of objects: X = (x1, . . . , xm) ∈ Rd

Hyperparameters : # of layers L, dim of symbols ds, dim of abstract objects da, hyperparameters of
MHR modules, activation function for relation tensor σrel, hyperparameters of
feedforward networks.

Learnable parameters: symbols S = (s1, . . . , sm) ∈ Rds×m, feedforward networks ϕ(1), . . . , ϕ(L),
parameters of MHR modules.

Output : Abstracted sequence: A = (a1, . . . , am) ∈ Rda×m

(a1, . . . , am)← (s1, . . . , sm)
for l← 1 to L do

R← MultiHeadRelation(l)(X)
R← σrel(R)
ai ←

∑n
j=1 R[i, j]aj , i = 1, . . . ,m

ai ← ϕ(l)(ai), i = 1, . . . ,m
end

other objects (i.e.,R[i, j] depends not only on xi, xj , but on the full object sequence). Thus, softmax
computes the relation between two objects relative to the relations with all objects. Depending on
the application, this may be a very useful inductive bias or a harmful one. Alternatively, we may
apply an activation function σrel independently for each entry in the relation tensor (e.g., linear,
relu, sigmoid, tanh, etc.)

Finally, we remark that this operation is closely related to the multi-head attention operation
of Transformers. In fact, computing the relation tensor and performing symbolic message-passing
can be achieved via a multi-head attention operation of the form

RelationalCrossAttention (E, S) ≡ Attention (Q← E,K ← E, V ← S) , (2.5)

where E are the input objects (or some processed-encoding of them), and S = (s1, . . . , sm) are
the symbolic variables. We refer to this operation as relational cross-attention. This is in contrast to
standard (encoder-decoder) cross-attention, which takes the form Attention (Q← D,K ← E, V ← E).

For completeness, Algorithm 4 gives an algorithmic description of the Abstractor module, cast
in terms of Transformer-based attention mechanisms. Note that we have added a self-attention
operation performed on the abstract symbols. This is merely to show this as an option. It may
be useful for some tasks, but, unlike the rest of Abstractor, it not intuitive what this might be
computing.

2.4. Relational learning using Transformers

The Abstractor module fits naturally into Transformer models. Hence, we position the Abstractor
framework as an extension of Transformers. In particular, combining an Abstractor with Trans-
former Encoder and Decoder modules forms a powerful sequence model with enhanced abilities
for relational reasoning and abstraction.

In our extended framework, processing occurs in encoder/decoder modules that handle particu-
lar types of information, separated from modules for “abstract inference.” The encoders/decoders

6

Algorithm 4: Abstractor (cast in terms of Transformer operations)
Input : sequence of objects: X = (x1, . . . , xm) ∈ Rd

Hyperparameters : # of layers L, dim of symbols ds, dim of abstract objects da, hyperparameters of
attention modules, hyperparameters of feedforward networks.

Learnable parameters : symbols S = (s1, . . . , sm) ∈ Rds×m, feedforward networks ϕ(1), . . . , ϕ(L),
parameters of attention modules.

Output : Abstracted sequence: A = (a1, . . . , am) ∈ Rda×m

A← S
for l← 1 to L do

A← SelfAttention(l)(A);
A← RelationalCrossAttention(l)(X,S);
A← ϕ(l)(A);

end

and the Abstractor modules communicate through cross-attention mechanisms that couple abstract
states with specific information in encoder/decoder modules. The abstract layers are composable
to include a hierarchy of abstract modules in which higher order relations are learned from lower
level relations, analogous to how convolutional layers are composed in deep neural networks.

E

Input

Encoder
Layers

E

E

A

Abstract
symbols

Abstractor
Layers

A

A

D

Target

Decoder
Layers

D

D

Output

Relational
Cross-attention

Cross-attention

Fig 1: Algorithmic framework integrating Transformers
and relational learning, implementing a form of the “rela-
tional bottleneck.”

The architecture has three types of states: en-
coder states E, decoder states D, and abstract
states A. The encoder states are vectors that
represent domain-specific information (e.g.,
sensory or motor), which are often success-
fully modeled by standard deep learning frame-
works, including standard Transformers. The
abstract states A are vectors that are learned
and processed using symbolic message-passing
based on the relations between the encoder
states. In particular, the encoder states are sep-
arated from the abstract states by a “relational
bottleneck” that only allows information about
relations (that is, inner-products) between en-
coder states to influence the learning and transformation of abstract states.

This ability to integrate with Transformers and process domain-specific information modeled
by an Encoder gives the Abstractor framework greater flexibility compared to existing relational
models like ESBN.

2.5. Configuring Abstractors for different tasks

Abstractors can be used to approach a variety of relational learning tasks. In the case of classifica-
tion or regression, the default architecture would be

Encoder→ Abstractor

7

and the discriminant or regression function is computed as f(A), where A is the final abstract
states. For relational sequence-to-sequence tasks, the default architecture is

Encoder→ Abstractor→ Decoder

In a “fully relational” task, the decoder only attends to the Abstractor, and therefore only uses
relational information from the input. Fully relational tasks are those which can be solved using
only relational information, without any information about the individual objects. An example of
a fully relational task is sorting objects; we give experimental details for this example in Section 4.

In a “partially-relational” task, the relational information is crucial, but information about indi-
vidual objects is also important. Here, we propose an architecture in which the decoder attends to
both the Abstractor and encoder modules. This can be done by either concatenating the encoder
and Abstractor states (i.e.: attend to concat(E,A)) or to iteratively cross-attend to the Encoder and
Abstractor. We call this a “sensory-connected” Abstractor.

This provides an extension of general sequence-to-sequence models with Transformers. In this
paper, to highlight the capabilities of the framework, we focus our experiments on fully relational
Abstractors. However, partially relational Abstractors are likely to be necessary for more realistic
tasks. We hypothesize that a sensory-connected Abstractor model would yield benefits on language
tasks.

We note that learning higher order relations is made possible by composing abstractors, as in the
architecture

Encoder→ Abstractor→ Abstractor→ Decoder.

Since a one-layer Abstractor is able to compute a large class of functions on relations, chaining
together Abstractors allows the computation of relations on relations (higher-order relations). We
formalize these comments in Section 3.

3. Function classes

In this section, we analyze the class of functions which can be modeled by the Abstractor module.
We do this by analyzing the class of functions of its two main components: the multi-head relation
module and symbolic message-passing.

We start by presenting a universal approximation result for “inner product neural networks”, as
used in the multi-head relation module. This will be useful when characterizing the class of func-
tions computable by Abstractors, but is also of independent interest more generally for relational
machine learning.

3.1. Function class of inner product relations

This section analyzes the class of functions which can be modeled by “inner product relations”
and the multi-head relation module. Consider vectors living in a space X . We would like to learn
a relation function r : X ×X → Rdr which maps pairs of objects in X to a dr-dimensional vector

8

describing the relation between these objects. We specialize Equation (2.3) to the symmetric form,
ϕi = ψi:

R(x, y) =

 ⟨ϕ1(x), ϕ1(y)⟩
...

⟨ϕdr(x), ϕdr(y)⟩

 , (3.1)

where ϕ1, . . . , ϕdr are learnable transformations corresponding to each dimension of the relation.

In a deep learning model, a natural choice is for ϕ1, . . . , ϕdr to be dr different neural networks
(e.g., MLPs, CNNs, etc. depending on the object space X). Hence, the parameters of R are θ =
(θ1, . . . , θdr), where θi are the parameters of ϕi.

The following result characterizes the class of relation functions computable by (3.1) when
ϕ1, . . . , ϕdr are feedforward networks. We make use of Mercer’s theorem and universal approxima-
tion properties of feedforward networks to obtain a universal approximation result for (symmetric)
inner product relational neural networks.

Theorem 3.1 (Function class of inner product relational neural networks).

Consider an inner product relational neural network modeling a dr-dimensional relation via
inner products of neural networks,

⟨x, y⟩MLP :=

 ⟨MLPθ1(x),MLPθ1(y)⟩
...

⟨MLPθdr
(x),MLPθdr

(y)⟩

 .
Suppose the data lies in a compact Hausdorff space X (e.g., a metric space) with a finite count-

ably additive measure. In particular, X can be any compact subset of Rd.

Then, ⟨·, ·⟩MLP is a Mercer kernel along each of the dr dimensions.

Furthermore, for any vector-valued relation function r : X × X → Rdr which is a Mercer
kernel in each dimension, there exists an inner product relational neural network which approx-
imates r arbitrarily closely in the supremum norm (i.e.: uniformly over (x, y) ∈ X × X). More
precisely, for all ϵ > 0, there exists dr neural networks with parameters θ1, . . . , θdr such that
supx,y∈X ∥r(x, y)− ⟨x, y⟩MLP∥∞ < ϵ.

Proof.

Denote the given relation function r by its dr components:

r(x, y) = (r1(x, y), . . . , rdr(x, y)). (3.2)

By assumption, ri is a Mercer kernel for each i = 1, . . . , dr. Consider the component ri. By
Mercer’s theorem (Mercer, 1909; Micchelli et al., 2006; Sun, 2005), there exists (ψi)i∈N, λi ≥ 0
such that ri(x, y) =

∑∞
i=1 λiψi(x)ψi(y), where ψi and λi are eigenfunctions and eigenvalues of

the integral operator

9

Tr : L2(X)→ L2(X)

Tr(f) =

∫
X
r(·, x)f(x)dx.

Furthermore, the convergence of the series is uniform:

lim
n→∞

sup
x,y∈X

|ri(x, y)−
n∑

j=1

λjψj(x)ψj(y)| = 0 (3.3)

Let ñi be such that

sup
x,y∈X

∣∣∣∣∣ri(x, y)−
n∑

j=1

λjψj(x)ψj(y)

∣∣∣∣∣ < ϵ

2
(3.4)

Now, for j = 1, . . . , ñi, let the ith neural network with parameters θi be a function from X
to ñi-dimensional space. Let (

√
λ1ψ1, . . . ,

√
λñi

ψñi
) be the function to be approximated by the

ith neural network. By the universal approximation property of neural networks, for any ϵ1, there
exists a neural network with parameters θ̂i such that

sup
x∈X

∣∣∣(MLP(x))j −
√
λjψj(x)

∣∣∣ < ϵ1 (3.5)

We refer to (Barron, 1993; Cybenko, 1989; Hornik et al., 1989) for results guaranteeing the exis-
tence of neural networks which can approximate any continuous function over a bounded domain.

For ease of notation, we denote MLPθ̂i
simply by MLP, omitting the dependence on fixed i.

Furthermore, MLP(x)j is the jth component of the output of MLP(x). Now note that the approxi-
mation error for ri is bounded by

sup
x,y∈X

|ri(x, y)− ⟨MLP(x),MLP(y)⟩|

= sup
x,y∈X

∣∣∣∣∣ri(x, y)−
ñi∑
j=1

MLP(x)jMLP(y)j

∣∣∣∣∣
≤ sup

x,y∈X

(∣∣∣∣∣ri(x, y)−
ñi∑
j=1

λjψj(x)ψj(y)

∣∣∣∣∣+
∣∣∣∣∣

ñi∑
j=1

λiψj(x)ψi(y)−MLP(x)jMLP(y)j

∣∣∣∣∣
)
(3.6)

The first term is less than ϵ
2

by (3.4). The second term can be bounded uniformly on x, y by∣∣∣∣∣
(

ñi∑
j=1

λiψj(x)ψi(y)

)
− ⟨MLP(x),MLP(y)⟩

∣∣∣∣∣
≤

ñi∑
j=1

|λiψj(x)ψi(y)−MLP(x)jMLP(y)j|

≤
ñi∑
j=1

(
|MLP(x)j|

∣∣∣√λjψj(y)−MLP(y)j
∣∣∣+ |MLP(y)j|

∣∣∣√λjψj(x)−MLP(x)j
∣∣∣)

10

Let ϵ1 in (3.5) be small enough such that the above is smaller than ϵ
2
. Then, by (3.6), we have that

sup
x,y∈X

|ri(x, y)− ⟨MLP(x),MLP(y)⟩| ≤ ϵ

2
+
ϵ

2
= ϵ

We repeat this for each component of the relation function ri, i = 1, . . . , dr, obtaining dr neural
networks each with parameters θ̂i. Thus, supx,y∈X ∥r(x, y)− ⟨x, y⟩MLP∥∞ < ϵ.

Remark 3.1. The result also holds for universal approximators other than feedforward neural net-
works, with a nearly identical proof.

Theorem 3.1 shows that inner products of neural networks (of the form in the multi-head re-
lation module) can approximate arbitrary continuous, symmetric, positive semi-definite relation
functions.

This theorem characterizes the class of functions that the symmetric multi-head relation module
can model. The class of functions in Equation (2.3) is strictly larger. As mentioned in the previous
section, one way to model multi-dimensional asymmetric relations is through a single ‘embedder’
network ϕ, and dr pairs of projection matrices W (i)

1 ,W
(i)
2 , i = 1, . . . , dr (Equation (2.4)). This has

the same function class as Equation (2.3) but enables greater weight sharing. The function class of
non-symmetric inner product relations can also be characterized.

3.2. Class of relational functions computable by symbolic message-passing

In this section, we analyze the class of functions computable by symbolic message-passing as
described in Algorithm 1. We view this operation as processing relations, mapping a relation tensor
to a sequence of objects.

From equation (2.2), the symbolic message-passing operation is clearly bijective as a function on
the input relation tensor R, for an appropriate choice of the symbol parameters S = (s1, . . . , sm).
For example, choosing S = Im×m (i.e.: the ith symbolic vector is the indicator m-vector with a 1
in the ith position, si = ei) reproduces the relation tensor after one message-passing operation:

s′i ←
n∑

j=1

R[i, j]ej =

R[i, 1]
R[i, 2]

...
R[i, n]

 .

More generally, one linear step of symbolic message-passing yields updated symbolic vectors such
that s′i is a linear function of the vector containing all objects’ relations with object i:

s′i ← S

R[i, 1]...
R[i, n]

 .

Following the linear step in symbolic message-passing, each updated symbolic state is transformed
via a neural network. Hence, the ith abstracted value after symbolic message-passing is given by

ai = ϕ (SRi) ,

11

where ϕ is a neural network, and Ri is the vector of object i’s relations with every other object,
Ri =

(
R[i, 1] · · · R[i, n]

)⊤. Hence, ai summarizes all the information about object i’s relations
to all other objects. We formalize this discussion in the following lemma, which follows from
universal approximation properties of feed-forward networks.

Lemma 3.1 (Function class of symbolic message-passing).

A one-step symbolic message-passing operation (in Algorithm 1) can compute arbitrary func-
tions of a each object’s relations with other objects in the input sequence. That is, there exists a
choice of symbols s1, . . . , sm and parameters of the feed-forward network such that ai computes
an arbitrary function of object i’s relations, Ri =

(
R[i, 1] R[i, 2] · · · R[i, n]

)⊤.

Thus, the abstracted sequence after a single step of symbolic message-passing has the form

A(1) = (a
(1)
1 , . . . , a(1)m) = (ϕ(R1), ϕ(R2), . . . , ϕ(Rm)) , (3.7)

where ϕ is an arbitrary learnable function shared by all abstracted objects, and ri is the vector of
object i’s relations with every other object.

That is, a(1)i summarizes object i’s relations with other objects. With further symbolic message-
passing operations, the ith abstracted vector can be made to represent information about other
relations, not necessarily involving the ith object. For example, at the second layer, the abstracted
vectors take the form

a
(2)
i = ϕ(2)

(
n∑

j=1

R[i, j]a
(1)
j

)
= ϕ(2)

(
n∑

j=1

R[i, j]ϕ(1)(Rj)

)
. (3.8)

3.3. Composing Abstractors to compute relations on relations

As described in Section 2, the Abstractor framework supports composing Abstractors in the form

Encoder→ Abstractor→ · · · → Abstractor→ Output.

Here, we analyze the function class generated by a composition of several Abstractors. Thus,
each Abstractor models and processes the relations between the abstract symbols at the previous
Abstractor. To make the analysis tractable, we assume that each Abstractor has a single-layer.

We saw in the previous section that a one-layer Abstractor is able to compute arbitrary functions
of each object’s relations in the sequence. Observe that the output sequence of abstracted objects is
a sequence of ‘relational vectors’. That is, objects which summarize relational information. Hence,
chaining together a sequence of Abstractors allows the computation of relations on relations.

Lemma 3.2 (Function class for compositions of Abstractors). A chain of k single-layer Abstrac-
tors

X → Abstractor→ · · · → Abstractor→ A,

each given by Algorithm 3, is able to compute arbitrary kth order relational functions.

12

The precise meaning of a “kth order relational function” will be made clear in the proof below.

Proof sketch. In Section 3.2 we characterized the output of a 1-layer Abstractor as

a
(1)
i = ϕ(1)

S(1)

R
(1)[i, 1]

...
R(1)[i, n]

 ≡ ϕ(1)

(
S(1)R

(1)
i

)
,

where the relation tensor R(1) is computed by a multi-head relation module applied to the input
object sequence X = (x1, . . . , cm).

Note that we will now use the superscript to denote the order in the Abstractor composition
chain rather than the layer depth within a single Abstractor (all Abstractors have a depth of one).

Let the second Abstractor’s symbols be denoted by S(2) = (s
(2)
1 , . . . , s

(2)
m). Then,

a
(2)
i = ϕ(2)

S(2)

R
(2)[i, 1]

...
R(2)[i, n]

 ,

where R(2) is the relation tensor computed by the second Abstractor’s multi-head relation module:

R(2)[i, j, k] = σ
(2)
rel

(〈
W

(k)
1 ϕ(2)

r (a
(1)
i),W

(k)
2 ϕ(2)

r (a
(1)
j)
〉)

, i, j ∈ [m], k ∈
[
d(2)r

]
,

where i, j ∈ [m] indexes the relation pair, k indexes the dimension of the relation, W1,W2 are
projection matrices, ϕr is the relational filter/embedder, and σrel is the relation activation function.

R(2) is a relation tensor which computes the relations between the abstract object output by
the previous Abstractor, A(1) = (a

(1)
1 , . . . , a

(1)
m). The space over which R(2) computes relations is

itself a space of relation vectors. Recall that ai = ϕ(1)(S(1)R
(1)
i) summarizes object i’s relations.

Hence, R(2)[i, j] models the relation between object i’s relations and object j’s relations. Hence,
the abstract objects at the second Abstractor can be written as

a
(2)
i = ϕ̃(2)

〈
ϕ̃
(2)
r (R

(1)
i), ψ̃

(2)
r (R

(1)
1)
〉

...〈
ϕ̃
(2)
r (R

(1)
i), ψ̃

(2)
r (R

(1)
m)
〉

 ,

where ϕ̃(2)
r , ψ̃

(2)
r are “relational filters” which encapsulate the projection matrices W1,W2 and

the maps ϕ(1)
r , ϕ

(2)
r , while ϕ̃(2) encapsulates the symbols S(1), S(2) and the maps σ(2)

rel , ϕ
(1), ϕ(2).

By taking these maps to be the identity, the class of relation functions on the first-order relations
(R1, . . . , Rm) is readily characterized by Theorem 3.1 in terms of the parameters of the second
Abstractor’s multi-head relation module.

More generally, at layer l, we have

13

R(l)[i, j, k] = σ
(l)
rel

(〈
W

(k)
1 ϕ(l)

r (a
(l−1)
i),W

(k)
2 ϕ(l)

r (a
(l−1)
j)

〉)
, i, j ∈ [m], k ∈

[
d(l)r
]
,

a
(l)
i = ϕ(l)

(
S(l)R

(l)
i

)
.

Thus, R(l) computes lth order-relations, and a(l)i is a function processing the lth-order relations
involving object i.

3.4. Robustness and error correction

In this section, we consider the robustness of the symbolic message-passing operation to noise.
Suppose a relation tensor R (say computed by a multi-head relation module) is given and trans-
formed by symbolic message-passing via Algorithm 1. Suppose that the output of the message-
passing operation is corrupted by noise. Can the relations be recovered reliably?

In linear symbolic message-passing, the symbols are transformed by A = SR so that each
abstract variable aj is in the convex hull of the set of symbols. As long as S has rankm, relations are
uniquely determined from the abstract symbols. Here we point out how the transformed symbols
can be robust to noise if the symbols are sufficiently redundant.

Specifically, suppose that the symbols S are transformed to A and corrupted with additive noise:

A = SR + Ξ (3.9)

where a fraction ϵ of the entries of Ξ are drawn from an adversarial noise distribution, and the other
entries are zero; dropout noise is also possible. This can be studied as an instance of compressed
sensing and “model repair” (Candès and Randall, 2018; Gao and Lafferty, 2020). In particular, the
relations can be recovered using the robust regression estimator

r̂j = argmin
u∈Rm

∥aj − Su∥1 (3.10)

where A = (a1, a2, . . . , am) with columns aj ∈ Rd. The main lemma in Gao and Lafferty (2020)
states that the following two conditions suffice:

Condition A: There exists some σ2, such that for any fixed c1, ..., cd satisfying maxi |ci| ≤ 1,∥∥∥∥∥1d
d∑

i=1

cisi•

∥∥∥∥∥
2

≤ σ2m

d
, (3.11)

with high probability, where si• ∈ Rm is the ith row of S.

Condition B: There exist κ and κ, such that

inf
∥∆∥=1

1

d

d∑
i=1

|sTi•∆| ≥ κ, (3.12)

sup
∥∆∥=1

1

d

d∑
i=1

|sTi•∆|2 ≤ κ2, (3.13)

with high probability.

14

Theorem 3.2. Assume the symbol matrix S satisfies Condition A and Condition B. Then if

κ
√

m
d
log
(
ed
k

)
+ ϵσ

√
m
d

κ(1− ϵ)
(3.14)

is sufficiently small, the linear program (3.10) recovers R, so that r̂j = rj with high probability.

The condition is essentially that
1

1− ϵ

√
m

d
(3.15)

is small, meaning that the dimension d of the symbols needs to be sufficiently large relative to the
dimension k of the relation.

3.5. Sparse, high-dimensional relations

The above setting ensures enough redundancy to recover the relations, constraining the number of
symbols k to be small relative to the symbol dimension d. This is not appropriate in the situation
where the relations are over a large number m of elements, for example, the contents of the entire
episodic memory. In this setting we assume that the relation tensor R ∈ Rm×m is sparse; that is,
each column rj ∈ ∆m has at most k nonzero entries: ∥rj∥0 ≤ k. To recover the relation we now
use the robust lasso estimator, which is a related linear program

r̂j = argmin
u∈Rm

∥aj − Su∥1 + λ∥u∥1. (3.16)

Here we have an analogous theorem, stating that if

κ/κ

1− ϵ

√
k

d
log(2m) ≤ c, (3.17)

for some sufficiently small constant c > 0, the robust lasso estimator (3.16) satisfies

∥r̂j − rj∥ ≤ C
κ/κ2

1− ϵ

√
σ2k

d
log(2m) (3.18)

for some constant C. This implies that we can accurately recover the relation tensor in the high
dimensional setting, even when many of the entries of the transformed abstract symbols are cor-
rupted.

The above discussion shows how the relation tensor can be recovered from the transformed
symbols, even under adversarial noise, assuming there is sufficient redundancy in the symbols. This
implies that it is possible to predict as well from the transformed symbols as from the relations,
without explicitly recovering the relations. Using ideas from (Hand and Voroninski, 2017; Song
et al., 2019), it may be possible to extend this theory to nonlinear mappings y = φ(Au) + η where
φ(·) is an activation function.

15

4. Experiments

4.1. Warm up: Ability to learn asymmetric and multi-dimensional relations

One recent work on relational machine learning is Kerg et al. (2022) where, based on prior work
of Webb et al. (2021), the authors argue for a particular type of inductive bias in relational models
and propose CoRelNet. The architecture is: given a sequence of objects (x1, . . . , xm), embed them
using an MLP ϕ, then compute the similarity matrix R = Softmax(A), A = [⟨ϕ(xi), ϕ(xj)⟩]ij .
The final output is an MLP applied to the flattened similarity matrix. They demonstrate that this
model can solve a series of simple tasks with high sample-efficiency compared to models like
ESBN and standard Transformers. However, CoRelNet has some notable limitations. One is that,
as described, it is only able to model symmetric relations2—R is symmetric by definition. Another
limitation is that it can only model single-dimensional relations—for each pair of objects (i, j),
their modeled relation is a single-dimensional scalar Rij . The Abstractor is able to model a signifi-
cantly larger class of relations. In particular, it is able to model asymmetric and multi-dimensional
relations through the MultiHeadRelation operation. This is demonstrated by the following simple
experiment. Note that this is merely intended as a warm up; we don’t wish to imply that this task
is not solvable by standard models which lack a relational bottleneck.

We generate N = 32 “random objects” represented by iid Gaussian vectors, oi
iid∼ N (0, Id) ∈

Rd, and associate an order relation to them o1 ≺ o2 ≺ · · · ≺ oN . We train several different
relational models to learn this order relation. Note that ≺ is not symmetric. Of the N2 = 1024
possible pairs (oi, oj), 15% are held out as a validation set (for early stopping) and 35% as a test
set. We evaluate learning curves by training on the remaining 50% and computing accuracy on the
test set (10 trials for each training set size). Note that under this set up, we are evaluating the models
on pairs they have never seen. Thus, the models will need to generalize based on the transitivity
of the ≺ relation. We observe that a simple Abstractor model is able to learn the relation while
CoRelNet cannot (Figure 2a).

For completeness, we also compare to a standard Transformer model, which performs slightly
better than the Abstractor on this simple task. We include this to highlight that an Abstractor will
not necessarily be superior to a Transformer uniformly on all tasks, but rather that it can real-
ize significant gains on tasks with complex relational structure, as demonstrated in the following
experiments.

4.2. Superior sample-efficiency on relational tasks compared to plain Transformers

The next experiment extends the idea of learning an order relation ≺ on random objects: now, the
task is to fully sort sequences of randomly permuted random objects.

1We ran the experiments described here on RTX 2080ti, RTX 3090, and A100 GPUs, available to us through our
institution’s internal cluster. The models here are relatively small; powerful GPUs are not required to train a single
model. We found the use of GPUs useful for evaluating learning curves over several trials.

2This is not fundamental to the CoRelNet model, which can learn asymmetric relations via the natural modification
A = [⟨W1ϕ(xi),W2ϕ(xj)⟩]ij , where W1,W2 are trainable matrices.

16

0 100 200 300 400 500

Training Set Size

0.6

0.8

A
cc

u
ra

cy

Learning Asymmetric ≺ Relation

Abstractor

CoRelNet

Transformer

(a) The Abstractor learns the transitive ≺
relation and generalizes, whereas CoRel-
Net’s learning curve is flat at the baseline
accuracy of 0.5.

0 200 400 600 800 1000

Training Set Size

60

80

100

S
E

T
C

la
ss

ifi
ca

ti
o

n
A

cc
u

ra
cy

Comparison to symbolic baseline for SET task

MLP with purely symbolic input

Abstractor on images, pre-learned relations

(b) Comparison of Abstractor trained on images
of cards and MLP with relations hand-encoded
symbolically as bit vectors.

0 500 1000 1500 2000 2500 3000

Training Set Size

0.00

0.25

0.50

0.75

1.00

S
or

ti
n

g
A

cc
u

ra
cy

Random Object Sorting

Abstractor

Ablation Model

Transformer

(c) Learning curves on sorting sequences of
random objects. The Abstractor is dramatically
more sample-efficient.

0 500 1000 1500 2000 2500 3000

Training Set Size

0.0

0.5

1.0
S

or
ti

n
g

A
cc

u
ra

cy

Random Object Sorting Generalization

Abstractor

Pre-trained

Transformer

Pre-trained

(d) Learning curves with and without pre-
training on a similar sorting task. The Abstractor
benefits significantly from pre-training.

0.0 0.2 0.4 0.6 0.8 1.0

Noise Level

0.00

0.25

0.50

0.75

1.00

S
or

ti
n

g
A

cc
u

ra
cy

Robustness to Additive Noise

Abstractor

Ablation Model

Transformer

(e) The Abstractor is more robust to corruption
by additive noise.

0.0 0.2 0.4 0.6 0.8 1.0

Noise Level

0.00

0.25

0.50

0.75

1.00

S
or

ti
n

g
A

cc
u

ra
cy

Robustness to Random Linear Transformations

Abstractor

Ablation Model

Transformer

(f) The Abstractor is more robust to corruption
by a random linear transformation.

Fig 2: Experiments. Shaded regions indicate twice the standard error of the mean.

17

We generate random objects in the following way. First, we generate two sets of random at-
tributes A = {a1, a2, a3, a4}, ai

iid∼ N (0, I) ∈ R4 and B = {b1, . . . , b12}, bi
iid∼ N (0, I) ∈ R8.

To each set of attributes, we associate the strict ordering relation a1 ≺ a2 ≺ a3 ≺ a4 and
b1 ≺ b2 ≺ · · · ≺ b12, respectively. Our random objects are formed by the Cartesian product of
these two attributes O = A × B, yielding N = 4 × 12 = 48 objects (i.e., each object in O is
a vector in R4+8 formed by a concatenation of one attribute value in A and one in B). Then, we
associate withO the strict ordering relation corresponding to the order relation ofA as the primary
key and the order relation of B as the secondary key. i.e., (ai, bj) ≺ (ak, bl) if ai ≺ ak or if ai = ak
and bj ≺ bl.

Given a set of objects in O, the task is to sort it according to ≺. More precisely, the input
sequences are randomly permuted sequences of 10 objects in O and the target sequences are the
indices of the object sequences in sorted order (i.e., the ‘argsort’). The training data are sampled
uniformly from the set of length-10 sequences inO. We also generate a non-overlapping validation
dataset (used during training for early stopping) and a testing dataset (used during evaluation).

We evaluate learning curves on an Abstractor, a Transformer, and an “Ablation” model (10 trials
for each training set size). The Abstractor uses the architecture Encoder → Abstractor →
Decoder. The Encoder-to-Abstractor interface uses relational cross-attention and the Abstractor-
to-Decoder interface uses standard cross-attention. The Ablation Model aims to test the effects of
the relational cross-attention in the Abstractor model—it is architecturally identical to the Abstrac-
tor model with the crucial exception that the Encoder-to-Abstractor interface instead uses standard
cross-attention. The hyperparameters of the models are chosen so that the parameter counts are
similar. We find that the Abstractor is dramatically more sample-efficient than the Transformer and
the Ablation model (Figure 2c).

4.3. Ability to generalize to similar tasks

Continuing with the object-sorting task and the dataset generated as described above, we test the
Abstractor’s ability to generalize from similar relational tasks through pre-training. The main task
uses the same dataset described above. The pre-training task involves the same object setO but the
order relation is changed. The ordering in attribute A is randomly permuted, while the ordering in
attribute B is kept the same. A strict ordering relation ≺ on O is obtained in the same way—using
the order in A as the primary key and the order in B as the secondary key.

The Abstractor model here uses the architecture Abstractor → Decoder (i.e., no Trans-
former encoder), and the Transformer is the same as the previous section. We pre-train both models
on the pre-training task and then, using those learned weights for initialization, evaluate learning
curves on the original task. Since the Transformer requires more training samples to learn the
object-sorting task, we use a pre-training set size of 3,000, chosen based on the results of the
previous subsection so that it is large enough for the Transformer to learn the pre-training task.
This experiment assesses the models’ ability to generalize relations learned on one task to a new
task. Figure 2d shows the learning curves for each model with and without pre-training. We observe
that when the Abstractor is pre-trained, its learning curve on the object-sorting task is significantly
accelerated. The Transformer does not benefit from pre-training.

18

4.4. Robustness and Out-of-Distribution generalization

In this experiment, we evaluate robustness to a particular type of noisy corruption. We train each
model on the same object-sorting task described above. We use a fixed training set size of 3,000
for the same reason —it is large enough that all models are able to learn the task. On the hold
out test set, we corrupt the object representations by applying a random linear transformation. In
particular, we randomly sample a random matrix the entries of which are iid zero-mean Gaussian
with variance σ2, Φ ∈ Rd×d,Φij ∼ N (0, σ2). Each object in O is then corrupted by this random
linear transformation, õi = Φoi, for each i ∈ [48]. We also test robustness to additive noise via
õi = oi + εi, εi ∼ N (0, σ2Id).

The models are evaluated on the hold-out test set with objects replaced by their corrupted ver-
sion. We evaluate the sorting accuracy of each model while varying the noise level σ (5 trials at
each noise level). The results are shown in figures 2e and 2f. We emphasize that the models are
trained only on the original objects in O, and are not trained on objects corrupted by any kind of
noise.

This experiment can be interpreted in two lights: the first is robustness to noise. The second is a
form of out-of -distribution generalization. Note that the objects seen by the models post-corruption
lie in a different space than those seen during training. Hence the models need to learn relations
that are in some sense independent of the value representation. As a theoretical justification for
this behavior, Zhou et al. (2009) shows that ⟨Φx,Φy⟩ ≈ ⟨x, y⟩ in high dimensions, for a random
matrix Φ with iid Gaussian entries. This indicates that models whose primary computations are
performed via inner products, like Abstractors, may be more robust to this kind of corruption.

4.5. Modularity and comparison to purely symbolic representations

Fig 3: The SET game

SET is a relatively straightforward but challenging cognitive task that
engages reasoning faculties in a deliberative, attentionally directed man-
ner, requiring several levels of abstraction over sensory embeddings.
Players are presented with 12 cards, each of which contains figures that
vary along four dimensions (color, number, pattern, and shape) and they
must find subsets of three cards which obey a deceptively simple rule:
along each dimension, all cards in a SET must either have the same or
unique values. For example, in the figure to the right, the cards with two
solid blue/purple diamonds, two striped blue squiggles, and two open
blue oblongs form a SET: same color, same number, different patterns,
different shapes.

To simulate the task of deciding if a triple forms a SET, we first train a convolutional neural
network to process the color images of the cards (a full deck includes 81 cards). The CNN is
trained to predict the attribute of each card, as a multi-label classification, and then an embedding
of dimension d = 32 of each card is obtained. This embedding layer uses an MLP to map the
convolutional feature maps into a distributed representation. Next, we train Abstractors separately
for each of the four attributes to learn same/different relations, where the task is to decide if an input

19

pair of cards is the same or different for that attribute. We then use the query and key mappings
WQ and WK learned for these relations to initialize the relations in a multi-head Abstractor. The
Abstractor is then trained on a dataset of triples of cards, half of which form a SET.

This is compared to a baseline symbolic model where, instead of images, the input is a vector
with 12 bits, explicitly encoding the relations. That is, for each of the four attributes, a binary
symbol is computed for each pair of three input cards—1 if the pair is the same in that attribute, and
0 otherwise. A two-layer MLP is then trained to decide if the triple forms a SET. The MLP using
the symbolic representation can be considered as a lower bound on the performance achievable by
the Abstractor. This comparison shows that the Abstractor is able to solve a task using relations
learned in other tasks (modularity), with a sample efficiency that is not far from that obtained with
purely symbolic, noise-free encodings of the relevant relations.

This subtask suggests how Abstractors might be viewed as an intermediate between strong “na-
tivist” approaches that assume a pre-existing foundation of symbolic primitives and purely “empiri-
cist” approaches that assume similar capabilities can emerge simply from processing large amounts
of data (Lake et al., 2015).

5. Discussion

In this work we have proposed a framework which extends Transformer models to naturally sup-
port types of relational learning, through cross-attention mechanisms that enforce a relational bot-
tleneck, so that only information about relations between encoder states are used in transformations
of the abstract states. Building on insights gained from the implementation of a relational bottle-
neck in other forms (Kerg et al., 2022; Webb et al., 2021), this exploits the powerful attentional
capabilities of the Transformer architecture to identify relevant relationships. Experiments with
sorting and other relational tasks indicate that this framework has the potential to combine the
benefits of function approximation over sensory states, as exploited in many deep learning models,
with abstraction and relational reasoning abilities supported by symbolic processing. Limitations
of the current approach suggest interesting future directions to better understand the potential of
this framework, and how it may relate to the algorithms of human cognition as implemented in the
brain, opening up possibilities for improved alignment of natural and artificial intelligences.

Two directions to highlight are the use of external memories and attentional control. From a
statistical perspective, the use of an external memory with relational cross attention effectively
allows nonparametric and semiparametric models. To make this explicit, note that the classical
kernel regression estimator for the Gaussian kernel can be seen as relational cross-attention with
relations and weights given by the kernel and values y1:n. Viewed in terms of episodic memory,
this has bindings {xi∥yi} with values yi that might be seen as being stored on the abstract side
if they are rewards or labels that are associated with a particular episode xi. Under a learned
relation, the model associates the reward with particular features or attributes of the inputs, as the
kernel changes to compute relations as inner products ⟨WQx,WKxi⟩, leading to a semiparametric
model. The number of keys grows unboundedly with the number of episodes experienced, while
the query remains of constant size. Realizing this approach will allow a regulation of the bias-
variance tradeoff through the way that attention is implemented, while limiting the number of

20

parameters that need to be learned.

A second direction, also motivated from cognitive neuroscience principles, is to replace parallel
execution of attention heads with serial evaluation as directed by a controller. In standard Trans-
formers, attention operations are spread across multiple attention heads, each of which is restricted
in scope, and that are evaluated in parallel across GPUs by embedding them in matrix multipli-
cation. This is a powerful, but energy inefficient approach, which also reduces the pressure for
learned representations to be abstract and attentional operations to be generalizable, in ways that
are exhibited by the flexibility of human cognition. It will be important to add a “cognitive control”
mechanism that resides on the abstract side and is responsible for selecting attention heads to be
evaluated in each step in a serial fashion (Cohen, 2017). This could be seen as analogous to evalua-
tive, gating and updating functions in anterior cingulate cortex, prefrontal cortex and basal ganglia
(Braver and Cohen, 2000; Frank et al., 2001; O’Reilly and Frank, 2006; Shenhav et al., 2013) and
implemented using neural network mechanisms such as LSTMs (Hochreiter and Schmidhuber,
1997) or variations on the Transformer architecture (Vaishnav and Serre, 2023).

Acknowledgments

Research supported in part by NSF grant CCF-1839308 and a Vannevar Bush Faculty Fellowship
to JDC.

References

Barrett, D. G., Hill, F., Santoro, A., Morcos, A. S., and Lillicrap, T. (2018). Measuring abstract
reasoning in neural networks. In Proceedings ICML.

Barron, A. (1993). Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory, 39(3):930–945.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer,
J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D.,
Kohli, P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases,
deep learning, and graph networks. arXiv:1806.01261.

Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. J. Gen.
Psychol., 39:15–22.

Braver, T. S. and Cohen, J. D. (2000). On the Control of Control: The Role of Dopamine in Reg-
ulating Prefrontal Function and Working Memory. In Control of Cognitive Processes: Attention
and Performance XVIII. The MIT Press.

Candès, E. J. and Randall, P. A. (2018). Highly robust error correction by convex programming.
IEEE Transactions on Information Theory, 54(7):2829–2840.

21

Cohen, J. D. (2017). Cognitive control: Core constructs and current considerations. The Wiley
handbook of cognitive control, pages 1–28.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2(4):303–314.

Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions between frontal cortex and
basal ganglia in working memory: a computational model. Cognitive, Affective, & Behavioral
Neuroscience, 1(2):137–160.

Gao, C. and Lafferty, J. (2020). Model repair: Robust recovery of overparameterized statistical
models. arXiv:2005.09912.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing machines. arXiv:1410.5401.

Hand, P. and Voroninski, V. (2017). Global guarantees for enforcing deep generative priors by
empirical risk. arXiv, abs/1705.07576.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Holyoak, K. J. (2012). Analogy and relational reasoning. In Holyoak, K. J. and Morrison, R. G.,
editors, The Oxford Handbook of Thinking and Reasoning. New York: Oxford University Press.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366.

Kerg, G., Kanuparthi, B., Goyal, A., Goyette, K., Bengio, Y., and Lajoie, G. (2020). Untangling
tradeoffs between recurrence and self-attention in artificial neural networks. Advances in Neural
Information Processing Systems, 33:19443–19454.

Kerg, G., Mittal, S., Rolnick, D., Bengio, Y., Richards, B., and Lajoie, G. (2022). On neural
architecture inductive biases for relational tasks. arXiv preprint arXiv:2206.05056.

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What Learning Systems do Intelli-
gent Agents Need? Complementary Learning Systems Theory Updated. Trends in Cognitive
Sciences, 20(7):512–534.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N., Tenenbaum, J. B., and Fedorenko, E.
(2023). Dissociating language and thought in large language models: A cognitive perspective.
arXiv preprint arXiv:2301.06627.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are complementary
learning systems in the hippocampus and neocortex: Insights from the successes and failures of
connectionist models of learning and memory. Psychological Review, 102(3):419–457.

Mercer, J. (1909). Functions of Positive and Negative Type, and their Connection with the Theory
of Integral Equations. Philosophical Transactions of the Royal Society of London. Series A,

22

Containing Papers of a Mathematical or Physical Character, 209:415–446. Publisher: The
Royal Society.

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. J. Mach. Learn. Res.,
7:2651–2667.

Monchi, O., Petrides, M., Petre, V., Worsley, K., and Dagher, A. (2001). Wisconsin card sorting
revisited: Distinct neural circuits participating in different stages of the task identified by event-
related functional magnetic resonance imaging. Jour. Neuroscience, 21(19):7733–7741.

Mondal, S. S., Webb, T. W., and Cohen, J. (2023). Learning to reason over visual objects. In
International Conference on Learning Representations.

O’Reilly, R. C. and Frank, M. J. (2006). Making working memory work: A computational model
of learning in the prefrontal cortex and basal ganglia. Neural computation, 18(2):283–328.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals, O., Hassabis, D., Wierstra, D., and Blun-
dell, C. (2017). Neural episodic control. In International conference on machine learning, pages
2827–2836. PMLR.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., and Lillicrap,
T. (2017). A simple neural network module for relational reasoning. In Advances in neural
information processing systems, pages 4967–4976.

Shenhav, A., Botvinick, M. M., and Cohen, J. D. (2013). The expected value of control: An
integrative theory of anterior cingulate cortex function. Neuron, 79(2):217–240.

Snow, R. E., Kyllonen, P. C., and Marshalek, B. (1984). The topography of ability and learning
correlations. In Sternberg, R. J., editor, Advances in the psychology of human intelligence,
volume 2, pages 47–103.

Song, G., Fan, Z., and Lafferty, J. (2019). Surfing: Iterative optimization over incrementally
trained deep networks. In Proceedings of Neural Information Processing Systems (NeurIPS).
arXiv:1907.08653.

Sun, H. (2005). Mercer theorem for RKHS on noncompact sets. J. Complexity, 21(3):337–349.

Vaishnav, M. and Serre, T. (2023). GAMR: A guided attention model for (visual) reasoning. In
The Eleventh International Conference on Learning Representations (ICLR).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Webb, T., Holyoak, K. J., and Lu, H. (2022). Emergent analogical reasoning in large language
models. arXiv:2212.09196.

Webb, T., Sinha, I., and Cohen, J. D. (2021). Emergent symbols through binding in external
memory. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

23

Whittington, J. C., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., and Behrens, T. E.
(2020). The Tolman-Eichenbaum machine: Unifying space and relational memory through gen-
eralization in the hippocampal formation. Cell, 183(5):1249–1263.e23.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pages 38–45.

Zhou, S., Lafferty, J., and Wasserman, L. (2009). Compressed and privacy-sensitive sparse regres-
sion. IEEE Trans. Information Theory, 55(2):846–866.

24

	Introduction
	The Abstractor Framework
	Relational symbolic message-passing
	Multi-head relations and relational cross-attention
	The Abstractor module: Putting it all together
	Relational learning using Transformers
	Configuring Abstractors for different tasks

	Function classes
	Function class of inner product relations
	Class of relational functions computable by symbolic message-passing
	Composing Abstractors to compute relations on relations
	Robustness and error correction
	Sparse, high-dimensional relations

	Experiments
	Warm up: Ability to learn asymmetric and multi-dimensional relations
	Superior sample-efficiency on relational tasks compared to plain Transformers
	Ability to generalize to similar tasks
	Robustness and Out-of-Distribution generalization
	Modularity and comparison to purely symbolic representations

	Discussion
	Acknowledgments
	References

