
Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (2021).

Modelling the development of counting with memory-augmented neural networks
Zack Dulberg (zdulberg@princeton.edu)
Princeton Neuroscience Institute, Princeton, NJ

Taylor Webb (taylor.w.webb@gmail.com)
University of California Los Angeles, Los Angeles, CA

Jonathan Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute, Princeton, NJ

Abstract

Learning to count is an important example of the broader hu-
man capacity for systematic generalization, and the develop-
ment of counting is often characterized by an inflection point
when children rapidly acquire proficiency with the procedures
that support this ability. We aimed to model this process by
training a reinforcement learning agent to select N items from a
binary vector when instructed (known as the give-N task). We
found that a memory-augmented modular network architec-
ture based on the recently proposed Emergent Symbol Binding
Network (ESBN) exhibited an inflection during learning that
resembled human development. This model was also capable
of systematic extrapolation outside the range of its training set
- for example, trained only to select between 1 and 10 items,
it could succeed at selecting 11 to 15 items as long as it could
make use of an arbitrary count sequence of at least that length.
The close parallels to child development and the capacity for
extrapolation suggest that our model could shed light on the
emergence of systematicity in humans.
Keywords: counting; development; give-N; reinforcement
learning; memory-augmented neural networks

Introduction
Humans are capable of systematic generalization, that is, per-
forming well outside the range of values on which they were
trained (Marcus, 2001; Chollet, 2019). For example, a hu-
man could fetch 12 apples if asked, despite having only ever
grabbed up to 9 apples in the past. Although this capacity
falls short of perfect systematicity (Lake, Linzen, & Baroni,
2019), artificial neural networks have much greater difficulty
performing well in contexts outside the convexity of their
training data (Lake & Baroni, 2018; Barrett, Hill, Santoro,
Morcos, & Lillicrap, 2018). Learning to count is one of the
earliest systematic behaviours acquired in human develop-
ment, and is foundational with respect to further development
of abstract procedures like mathematics. Here, we present a
counting model that exhibits both a developmental trajectory
similar to humans as well as systematicity.

The development of counting in childhood has previously
been summarized by the knower-level theory (Wynn, 1990,
1992; Carey, 2001; Sarnecka & Carey, 2006). This theory
suggests a number of distinct stages in acquiring an under-
standing of the cardinal meaning of numbers. A child be-
gins as a pre-numeral knower, with no understanding of car-
dinality, and then becomes a subset-knower, learning subse-
quent numbers in order (i.e., becomes a one-knower, then a
two-knower, then a three-knower, etc). Around the time a
child becomes a five-knower, there appears to be an inductive

transition, after which the child becomes a cardinal-principle-
knower (CP-knower), and understands the cardinal meaning
of numbers as high as they can count. Some data have sup-
ported this view, though children pass through knower-levels
at different rates (Sarnecka & Lee, 2009), and early stages
may be more approximate than previously thought (Wagner,
Chu, & Barner, 2019), while other data have called into ques-
tion whether a true semantic induction underlies this apparent
transition (Davidson, Eng, & Barner, 2012).

The knower-level theory has generally been based on data
from the widely used give-N task (Wynn, 1990, 1992; Frye,
Braisby, Lowe, Maroudas, & Nicholls, 1989). In this task, a
child is instructed to ’give N objects’, and is typically con-
sidered an N-knower if they can select the correct number
of objects twice as often as they make an error (66 % ac-
curacy). Our goal was to train a neural network to perform
the give-N task and examine its performance and develop-
mental trajectory. We suggest the give-N task is most realis-
tically modelled using a reinforcement learning framework.
First, the task can be successfully completed in many dif-
ferent ways (i.e. by selecting objects in various orders), so
a reinforcement rather than a more specific instructive sig-
nal is appropriate. Furthermore, children receive a substan-
tial amount of reinforcement from adults when learning tasks
like these (”good job!”). Finally, the give-N task can easily be
expressed as a decision process with discrete actions, which
therefore lends itself naturally to reinforcement learning.

We report simulations of a model that, trained to perform
the give-N task using reinforcement learning, displays both
an inflection point consistent with the human developmen-
tal trajectory, as well as the capacity for systematic extrap-
olation when presented with stimuli out of the range of its
training. The model extended the Emergent Symbol Binding
Network (ESBN) (Webb, Sinha, & Cohen, 2021), in which
internal representations of a control network were separated
from task inputs, interacting only through binding in a differ-
entiable external memory module. We developed a variant of
the ESBN within a reinforcement learning framework to ad-
dress how its capacity for symbol-like behavior might support
the development of systematic counting proficiency. We also
softened the separation constraint, giving the ESBN access to
both internal and input streams (and thus the option to over-fit
to training inputs), and it still exhibited symbol-like behav-
ior and the capacity for systematic generalization. Baseline
models did not display inflection or extrapolation, suggest-

ar
X

iv
:2

10
5.

10
57

7v
1

 [
cs

.A
I]

 2
1

M
ay

 2
02

1

ing variable binding and dot-product similarity evaluation as
the relevant architectural inductive biases that promoted sys-
tematicity and emulated human development. This work also
supports the broader idea that the development of abstract
conceptual knowledge may be supported by the learning of
systematic procedures.

Related Work
There have been various attempts to model counting. One
line of inquiry investigated the ability of neural networks to
estimate numerosity by, for example, looking at an image of
objects (Chen, Zhou, Fang, & McClelland, 2018; Stoianov
& Zorzi, 2012; Zorzi & Testolin, 2018). Another study used
counting equivariance relations to support the learning of vi-
sual representations (Noroozi, Pirsiavash, & Favaro, 2017).
However, such perceptual tasks do not address the capacity
for systematic counting behavior. Other work has shown that
recurrent neural networks can keep track of counts in order to
predict the next character in a string derived from some gram-
mar (Rodriguez, Wiles, & Elman, 1999; Rodriguez, 2001).
Though accuracy was limited, some of these networks could
extrapolate to longer strings than those on which they were
trained. However, this was a character prediction task rather
than a counting task, making the parallel to human counting
development unclear. Finally, Bayesian models have been
proposed to address the development of systematic count-
ing in humans (Piantadosi, Tenenbaum, & Goodman, 2012;
Lee & Sarnecka, 2010). These models generally assumed
knower-levels (including CP-knower) as primitive hypothe-
ses. The model we propose does not include such primitives,
seeking to explain systematicity as an emergent property that
arises through learning.

Some neural network modeling studies have directly ad-
dressed learning to count. Lu and McClelland (2016) intro-
duced a feed-forward network with a visual attention mech-
anism that was trained through a combination of reinforce-
ment learning and ‘social scaffolding’ (demonstrations from
a teacher) to perform the how-many task (a simpler counting
task that children often master before they can perform the
give-N task). Fang, Zhou, Chen, and McClelland (2018) de-
veloped an extension of this model that used a recurrent net-
work and operated over more realistic two-dimensional in-
puts. Although this network learned numbers in the correct
order (passing appropriately through subset-knower levels),
it did not display an inflection point for higher numbers, and
was not tested on extrapolation for numbers outside the range
on which it was trained. Sabathiel, McClelland, and Solstad
(2020) expanded further on this work by training a recurrent
convolutional network to perform a variety of counting tasks,
including give-N. However, the give-N task did not display a
familiar developmental trajectory (for example, it learned to
give-1 last rather than first), and this model was also not tested
on numbers outside the training range. A common element of
these studies was the use of teacher-guided learning; that is,
networks were trained to imitate a specific way of solving the

task, rather than learning from reinforcement alone. Imita-
tion has in fact been shown to improve learning of multiple
tasks in a rich 3D environment, but interestingly, in that work,
agents still struggled most with learning to count (Abramson
et al., 2020). Although imitation likely plays a role in the de-
velopment of many skills, here we investigated to what extent
a model trained from reinforcement alone could account for
the relevant developmental phenomena.

Methods
Environment
We represented a set of objects in the give-N task as a binary
vector in which 1’s corresponded to the presence of an ob-
ject at a given location. For example, the vector [0,1,0,1,1,0]
indicated that there were objects at locations 2, 4, and 5. Vec-
tors were of length 40 so that the space of possible object
arrangements was combinatorically large (240 states), in or-
der to prevent memorization. All models were trained on the
give-N task as follows: given an initial object vector o0, and
an instruction to give N objects (represented by the one-hot
vector xN), the model should select N unique objects one at
a time from the object vector to produce a correct response. If
a location with an object was selected at time t−1, the value
at that location changed from 1 to 0 in ot. The binary object
vector can be interpreted as the output of an object segmenta-
tion model; focusing on this intermediate level of abstraction
was motivated by the desire to understand the acquisition of
counting competency separately from the details of sensory
processing and object segmentation.

Model
First, we pre-trained a counter module that consisted of an en-
coding function e (a 128 unit linear projection), a successor
function s (another 128 unit linear projection), and a decoding
function d (a 15 unit linear projection). Given a 15-unit one-
hot vector xn representing an integer n∈ {1,15}, the counter
was trained to produce an embedding z such that z = e(xn),
xn = d(e(xn)), and xn+1 = d(s(e(xn))). In this way, s was
a successor operation that could iterate through a learned se-
quence of z embeddings, e was an encoder that could trans-
late a one-hot instruction into one of the embeddings in that
sequence, and d was a decoder that could translate embed-
dings back into one-hots (in the our models, d only played a
role during pre-training). These components implemented a
counting capability assumed to have been acquired by chil-
dren at the time they are asked to perform the give-N task.

The temporal structure of the counter outputs was the same
for all models (Fig. 1a), where zt represented the embedding
produced by the counter and passed to the networks at teach
time step t. At t = 0, the task instruction xN was passed
through the encoder e to generate z0. At t = 1, the one-hot
representing the start of the count sequence, x1, was passed
through e to generate z1. For each subsequent time step,
the embedding from the previous time step zt−1 was passed
through the successor function s to generate the embedding

(a) Counter (b) ESBN

(c) Dot-product (d) LSTM (e) Transformer

Figure 1: Schematics. Temporal count sequence shown in
(a), spatial architecture of models in (b-e). The counter (a)
consisted of the encoder e (which translated one-hot vectors
xN / x1 into count embeddings z0 / z1), and the successor
function s (which iteratively produced zt from zt−1 starting
with z1). The ESBN model (b) consisted of an LSTM con-
troller which at each time step received a concatenation of
key krt (read from memory), object vector ot and count em-
bedding zt as inputs, wrote key kwt to memory, and selected
action at. The count embeddings also interacted with the
controller via a key/value memory system indicated by matri-
ces Mk/Mv . In the dot product model (c), only the cosine
similarity (dot symbol in brackets) of each count embedding
zt with the instruction embedding z0 was input to the LSTM
controller along with ot. In the LSTM baseline (d), zt and
ot were input directly into the LSTM controller. In the trans-
former baseline (e), the full history of count embeddings and
object vectors up until time t was input into a transformer
layer.

for the next number in the count list zt = s(zt−1) (represent-
ing the counter reciting its learned count sequence).

The ESBN model consisted of a set of components out-
lined in Fig. 1b. The controller was an LSTM (Hochreiter &
Schmidhuber, 1997) augmented with a differentiable (exter-
nal) memory separated into keys (Mk) and values (Mv). The
memory was initialized with one learned key/value pair so it
did not start out empty, and an additional key/value pair (kwt

/ zt) was written to memory at each subsequent time-step.
Note the value here was the zt just described.

As in the original ESBN, the LSTM controller had a single
layer with 512 units. The controller received a concatenation
of three vectors as input at each time step: krt , zt, and ot. The
input krt was a key initialized to zeros at t = 0, and retrieved
from memory at each subsequent time-step. To retrieve krt ,
the cosine similarity was calculated between zt and all pre-
vious values in memory Mvt−1 , passed through a softmax to
produce a set of weights wkt , and used to calculate a weighted

sum over Mkt−1 , the keys in memory. The second input to the
controller, zt, was the count embedding itself (so that the de-
cision to use krt , zt or some combination thereof to solve the
task was left up to the model). The third input was the object
vector ot.

The ESBN model had two output heads. The action head
was a fully-connected layer with input size 512 and output
size 41 (corresponding to the 40 possible object locations,
plus an additional done action). A softmax activation was ap-
plied to the output logits to produce a vector of action proba-
bilities. The controller also had a key output head (256 units
with ReLU nonlinearities) that produced the key kwt written
to memory at each time step .

We compared the ESBN model to a set of models that
lacked key/value memory modules. The dot-product model
(Fig. 1c) was meant to elucidate the role of similarity-based
memory retrieval in the success of the ESBN model, albeit in
a manner that is specifically tailored to the counting task (un-
like the original ESBN). We computed the cosine-similarity
between zt and z0 directly, so the controller only received
ot and the scalar similarity score as inputs. In the LSTM
baseline (Fig. 1d), the controller simply received ot and zt
as inputs. Finally, in the transformer baseline, the controller
was a single transformer layer (Vaswani et al., 2017) (8 self-
attention heads, 512-unit MLP, positional encoding) which at
each time step received the entire past sequence of o0..t and
z0..t , concatenated as shown in Fig. 1e.

Training
Pre-training Counter The counter was pre-trained on its
auto-encoding and successor functions. Given a one-hot input
vector xn where n ∼ Uniform(1,15), the counter produced
an output of d(si(e(xn))). si represented iterating s, the suc-
cessor function, i times in a row, with i∼ Uniform(0,15−n).
This allowed for interleaved learning of both encoding and
decoding between one-hot space and embedding space, as
well as iterating through the learned embeddings sequentially
with the successor function. The loss was computed as the
mean-squared-error between the output vector and the desired
one-hot vector xn+i. As well, a similarity penalty on the em-
beddings was added to the loss (for i 6= 0) as the dot product
e(xn) ·si(e(xn)). Without this penalty, repeated applications
of the successor function caused embeddings to drift apart
from their corresponding one-hot encodings. The Adam op-
timizer (Kingma & Ba, 2014) was used to perform weight
updates on mini-batches of 1 with a learning rate of 10−4.
The weights of the counter network were frozen before being
used in the subsequent reinforcement learning task.

Reinforcement Learning of give-N Task During training,
action at was sampled at each time-step from a categorical
distribution using action probabilities produced by our mod-
els. We used a two-step training curriculum.

In the first step, agents were trained only to select 1s and
not 0s. The object vector was the only input (all other input
units were set to zero), and the agent received a reward of 0 if

it selected an object slot that contained a 1 and a reward of -1
otherwise. Episodes ended after 20 time-steps.

In the second step, we switched to the give-N task. Each
training episode started by randomly selecting an integer N
between 1 and Nmax, represented as the one-hot instruction
vector xN . Nmax was initialized to 1, and incremented by
1 once the network achieved at least 66% accuracy on give-
Nmax. This curriculum progressed until Nmax was fixed at 10.
Having selected N for a given episode, the object vector was
populated with j objects, where j ∼ Uniform (N + 10,35).
This was done to reduce the correlation between N and the
number of objects in the object vector, while keeping the
space of possible object arrangements very large.

If the agent selected an object location containing a 1, that
object was replaced with a 0 on the next time step, and the
agent received a reward of 0. If the agent selected a location
containing a 0, it received a reward of−1. Finally, if the agent
selected done (ending the episode), it received a reward of +5
if it had by that time selected exactly N objects, and otherwise
a reward of −|N−n| if it had selected n 6= N objects.

At the end of each episode, one gradient descent step in
weight space was performed according to the REINFORCE
policy gradient algorithm (Williams, 1992) (chosen because
it was the simplest algorithm capable of learning the task).
The Adam optimizer with a learning rate of 5× 10−5 was
used for a total of 500,000 episodes (50,000 episodes on step
1 and the remaining 450,000 episodes on give-N). A set of 30
randomly initialized models were trained for each condition.

Testing
In order to track developmental trajectories, models were
tested on give-N at check-points during training every 1000
episodes. At each check-point, an accuracy score was pro-
duced by calculating the proportion of correct responses out
of 30 new object vectors (unseen during training) for each
requested N ∈ {1,10}. Actions were selected during testing
based on the maximum action probability rather than categor-
ical sampling. A correct response was defined as receiving no
negative rewards during the complete episode (based on our
reward scheme, this meant the agent selected exactly N ob-
jects, and did not select any empty locations, before indicat-
ing done). The episode at which training accuracy exceeded
a threshold of 66% was recorded for each N ∈ {1,10}. This
produced a developmental trajectory for the accuracy of each
model, and we compared how well these trajectories were fit
by linear, exponential, logarithmic or sigmoidal functions us-
ing the Bayesian information criterion (Schwarz, 1978).

Finally, best performance as well as extrapolation perfor-
mance was determined by calculating the accuracy of each
model at the episode during training that had the highest av-
erage accuracy across N ∈ {1,10}. The extrapolation set was
defined as N = {11,15}, a set of instructions for give-N that
was never presented to the model during training, but was
nevertheless tested for accuracy at each checkpoint. Occa-
sionally, our models exhibited unstable behavior (i.e., initially
learning the task well, but then dropping in performance prior

(a) ESBN Model (b) Dot-product Model

(c) LSTM Baseline (d) Transformer Baseline

Figure 2: Accuracy on the give-N task for all trained models.
Two bars are displayed for each N: the point during train-
ing with the highest average accuracy across N from 1 to 10
(dark blue) and the best accuracy for each N at any point in
training (light blue, left out for extrapolation to avoid using
extrapolation performance to select when to test the model).
Bars in each subplot represent mean and standard error across
an ensemble of 30 trained models. The red line separates the
training regime (left) from the extrapolation regime (right).

to the final episode). This required us to select an appropriate
testing point, intentionally not using accuracy on the extrap-
olation set to determine this point in order to avoid test-set
leakage into our results. In order to evaluate more modest
success, particularly for the baseline models, we also report
the best performance for each N ∈ {1,10} at any point during
training individually.

Results
Overall performance and extrapolation performance are
shown in Figure 2. The ESBN model learned the task
well, and achieved significant extrapolation. The dot-product
model did even better in these respects. In contrast, while the
baseline models performed well for N up to around 5, per-
formance degraded in various ways past that. For example,
unlike the ESBN and dot-product models, the LSTM baseline
struggled to perform well for higher values of N simultane-
ously, indicated by the difference between best accuracy at
any time during training, and best accuracy when the model
was doing its best on average. The transformer baseline strug-
gled as N increased, with only 3 models ever crossing thresh-
old on Give-10. The baseline models were also incapable of
extrapolation (N=11-15; Fig. 2c and 2d).

The developmental trajectory of performance on the train-
ing set is shown in Figure 3. In order to be included in the
plot, a model had to have crossed threshold at some point dur-
ing training for all N displayed. The ESBN and dot-product
models achieved criterial accuracy (66%) for all values of N

(a) ESBN Model (b) Dot-product Model

(c) LSTM Baseline (d) Transformer Baseline

Figure 3: Developmental trajectories for all models. For each
requested N on the x-axis, the episode at which a threshold of
66% accuracy was crossed is displayed on the y-axis (which
begins after 50,000 episodes of the step-1 curriculum). In-
sets show zoomed-in trajectories, colours represent individ-
ual models, and error bars represent standard deviation across
models. Out of a training ensemble of 30 models, only those
that reached threshold performance for all N at some point
during training were included (n=30/30 for ESBN and dot-
product models, n=25/30 for LSTM baseline, and n=3/30 for
the transformer baseline).

for 30/30 models; in contrast, only 25/30 LSTM baseline and
3/30 transformer baseline models met this criterion. Though
not shown, the transformer model also failed when we input
the object vector after rather than before the transformer layer.

All models that met criterion displayed sequential learn-
ing, with higher values of N crossing the threshold later than
lower values of N (this occurred even without being enforced
by curriculum training, but those results are not shown).
However, the ESBN and dot product models achieved these
thresholds much earlier in training (∼ 100k episodes) com-
pared to the baseline models (∼ 450k episodes). However,
only the ESBN displayed an inflection point, past which cri-
terial performance for higher N’s were reached after many
fewer epochs of training, and sometimes almost immediately.
This was confirmed using a Bayesian information criterion
to compare linear, exponential, logarithmic and sigmoidal fits
to the development trajectory of the ESBN model. The sig-
moidal fit best; and, when fit to the trajectory of individual
instances of the model to quantify the N of inflection, exhib-
ited a mean of 4.38±0.39 (mean ± sd).

Discussion
We showed that a model of counting based on the ESBN ar-
chitecture, and trained with reinforcement learning, exhibited
a developmental trajectory qualitatively similar to the one ob-
served in humans learning to count, as well as the capac-
ity for systematic extrapolation. A model that implemented
only the retrieval operation required for the counting task
(the dot-product similarity operation) displayed good perfor-
mance and extrapolation, but not a clear inflection in its devel-
opmental trajectory. Baseline models using either an LSTM
or transformer as a controller, but without the external mem-
ory component, displayed much slower learning overall, no
inflection in the learning trajectory, and no capacity for ex-
trapolation. The transformer model did particularly poorly,
possibly because standard transformers are ill-suited to pro-
cessing adjacent time-steps (Mishra, Rohaninejad, Chen, &
Abbeel, 2017).

One explanation for the success of the ESBN model was
identified where it was first described (Webb et al., 2021).
There, the authors argued that because the information stream
accessible to the controller was isolated from the incoming
data stream by the key/value memory, the controller was free
to produce and respond to abstract representations needed to
perform the task, without being shaped or tied to individ-
ual items (tokens); these could be thought of as fulfilling the
role of symbols in traditional architectures. Here, the key as-
sociated with (i.e. bound to) the instruction embedding z0
was this symbol, which functioned as N in the give-N task.
Since the controller’s job was to report when the correct count
was reached, it simply had to recognize when kr was close
enough to this key. Once learned, it could quickly gain the
capacity to give any N for as high as it could count.

Here, we relaxed the isolation of the controller from the
data, giving it access to both the key and value streams at
every time-point, and allowed it to learn which source of in-
formation was most useful. In principle, the network could
have ignored the input from its external memory (the re-
trieved keys), performing the task only on the basis of the
count embeddings that it received directly as input. However,
this likely would have resulted in overfitting to the count em-
beddings observed in the training set, preventing extrapola-
tion to new count embeddings, as was observed for the LSTM
and transformer baseline models. Surprisingly, the ESBN did
not display this overfitting, suggesting that it was indeed per-
forming the task on the basis of information retrieved from its
external memory.

We hypothesize that this occurred because the gradients
associated with the direct input of count embeddings at the
beginning of an episode tended to vanish over the course
of the episode, whereas the information retrieved from ex-
ternal memory was available at the time point immediately
before the relevant action (done) was taken. This suggests
that the strict architectural separation in the original ESBN
model might not be necessary to achieve systematic behav-
ior. It is also interesting to note that both baseline models

had good performance until around N = 5, past which perfor-
mance degraded, reflecting the possibility that increased task
difficulty after this point pressured the transition from a spe-
cific to a systematic solution in the ESBN model. It could be
that a similar mechanism is responsible for the transition seen
around N = 5 in children.

We found that a simpler version of the model, incorpo-
rating only the dot-product similarity operation, displayed a
comparable level of task performance and extrapolation. This
suggests that, in the context of this task, this dot-product oper-
ation was the key inductive bias that enabled the ESBN to dis-
play systematic counting behavior. However, this simpler ver-
sion of the model was specifically designed for the counting
task, since the relevant similarity value (between the instruc-
tion and the count at each time step) was passed directly to
the controller, rather than being embedded in a more general-
purpose memory architecture. Furthermore, this version of
the model did not exhibit an inflection in its learning trajec-
tory, suggesting that this inflection may reflect the difficulty
of learning to interact with memory. For these reasons, this
model should be viewed as an attempt to better understand the
operations of the ESBN, rather than a competing theoretical
account.

One concern with the developmental trajectory displayed
by the ESBN might be that, although it exhibits an inflection,
that is softer than a more discrete transition to the CP-knower
stage suggested by some developmental data (Wynn, 1992).
It is worth emphasizing that this data was collected at lon-
gitudinal intervals of a minimum of 5-8 weeks, and so may
not have adequate temporal resolution to clearly distinguish
between these two possibilities. Future work involving more
fine-grained longitudinal evaluation might test whether this
transition is truly discrete, or closer to the sigmoidal trajec-
tory displayed by the ESBN.

We exploited a form of curriculum learning in the present
work, first pre-training networks to iterate through the count
sequence, then training them to select objects, and finally to
perform the give-N task. It was possible for networks to learn
all of these tasks at the same time, but we chose a curricular
approach to mirror the fact that children are typically able to
memorize arbitrary sequences early on, and often can count
to numbers much higher than they are able to successfully
employ in tasks such as give-N (Fuson, Richards, & Briars,
1982). Importantly, the pre-learned count sequence could be
used as scaffolding to support extrapolation to numbers out-
side the range of training on the give-N task.

Some have argued that the transition to being a CP-knower,
as measured by the give-N task, marks a more general seman-
tic induction of abstract number concepts, as measured by
other related tasks (such as the ability to judge which of two
numbers is greater) (Sarnecka & Carey, 2008). Our model,
which was only trained to perform the give-N task, offers
an alternative interpretation: the developmental trajectory ob-
served in this task might reflect the learning of a systematic,
but narrow, procedure, rather than a general understanding

of cardinality. In line with this view, there is some evidence
to suggest that children can often succeed on the give-N task
while failing to perform closely related tasks (Davidson et al.,
2012). Thus, similar to our model, children may indeed un-
dergo a phase in which their ability to perform related count-
ing tasks is not yet integrated, and is better characterized as
a set of ‘blind’ procedures specific to each task, despite be-
ing able to perform those procedures in a systematic man-
ner. This is in line with the ‘knowledge-in-pieces’ view of
development, whereby early concepts are not immediately in-
tegrated into a coherent whole (DiSessa, 2014).

Limitations and Future Work Despite the limitation of
having trained our models on only one task, it is possible that
the ESBN architecture may not only facilitate the learning
of systematic procedures in specific tasks (as demonstrated
here) but in a multi-task learning context as well. In future
work, we plan to train networks on multiple related tasks (e.g.
the how-many task, unit task, and direction task (Sarnecka &
Carey, 2008)) and study whether the ESBN affords a similar
benefit in terms of the ability to perform these tasks systemat-
ically, and in a manner that mirrors the human developmental
trajectory. We are also interested in allowing the controller to
select the most useful stream of data to bind to its memory
depending on its goal, so that we don’t need to hard-code its
use of the pre-trained counter. Preliminary data suggest the
model is capable of making this selection.

Additionally, some instances of the baseline models failed
to learn the full task, and some of the ESBN models were
unstable, learning the task well initially but then having per-
formance drop as training progressed. This could have been
due to the high-variance of the policy gradient estimator (the
REINFORCE algorithm). We tried to replicate the human
ability to learn from a single episode at a time, but off-policy
learning methods (e.g. replay) might be required to ensure
all networks reliably learn the task. As well, more advanced
policy gradient algorithms might improve performance of our
models, and are left to future work for implementation.

Finally, our model was restricted in that it could only count
as high as the length of the count sequence it was trained to
memorize, representing an intermediate level of human de-
velopment (i.e. the stage when children cannot count higher
than their memorized count sequence, despite being pre-
sumed CP-knowers). Most adults are capable of counting to
arbitrarily large numbers, using a recursive, hierarchical al-
gorithm; that is, cycling through digits and keeping track of
place values. We believe that introducing hierarchical struc-
ture, context segmentation and normalization (Webb et al.,
2020), together with recursive application of the counter’s
ability to iterate through a fixed sequence, might permit the
capacity for unbounded counting. This offers the promise
of providing a neurally plausible mechanism for symbolic
counting, which lies at the heart of many powerful cognitive
functions of which humans are capable, including mathemat-
ical reasoning.

References
Abramson, J., Ahuja, A., Brussee, A., Carnevale, F., Cassin,

M., Clark, S., . . . others (2020). Imitating interactive intel-
ligence. arXiv preprint arXiv:2012.05672.

Barrett, D., Hill, F., Santoro, A., Morcos, A., & Lillicrap, T.
(2018). Measuring abstract reasoning in neural networks.
In International conference on machine learning (pp. 511–
520).

Carey, S. (2001). Cognitive foundations of arithmetic: Evo-
lution and ontogenisis. Mind & Language, 16(1), 37–55.

Chen, S., Zhou, Z., Fang, M., & McClelland, J. (2018). Can
generic neural networks estimate numerosity like humans?
In Cogsci.

Chollet, F. (2019). On the measure of intelligence. arXiv
preprint arXiv:1911.01547.

Davidson, K., Eng, K., & Barner, D. (2012). Does learning
to count involve a semantic induction? Cognition, 123(1),
162–173.

DiSessa, A. (2014). A history of conceptual change research:
Threads and fault lines.

Fang, M., Zhou, Z., Chen, S., & McClelland, J. (2018). Can a
recurrent neural network learn to count things? In Cogsci.

Frye, D., Braisby, N., Lowe, J., Maroudas, C., & Nicholls,
J. (1989). Young children’s understanding of counting and
cardinality. Child development, 1158–1171.

Fuson, K., Richards, J., & Briars, D. (1982). The acqui-
sition and elaboration of the number word sequence. In
Children’s logical and mathematical cognition (pp. 33–92).
Springer.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Lake, B., & Baroni, M. (2018). Generalization without
systematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In International conference
on machine learning (pp. 2873–2882).

Lake, B., Linzen, T., & Baroni, M. (2019). Human few-
shot learning of compositional instructions. arXiv preprint
arXiv:1901.04587.

Lee, M., & Sarnecka, B. (2010). A model of knower-level be-
havior in number concept development. Cognitive science,
34(1), 51–67.

Lu, Q., & McClelland, J. (2016). Teaching a neural network
to count: reinforcement learning with “social scaffolding”.

Marcus, G. (2001). The algebraic mind.
Mishra, N., Rohaninejad, M., Chen, X., & Abbeel, P. (2017).

A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141.

Noroozi, M., Pirsiavash, H., & Favaro, P. (2017). Repre-
sentation learning by learning to count. In Proceedings of
the ieee international conference on computer vision (pp.
5898–5906).

Piantadosi, S., Tenenbaum, J., & Goodman, N. (2012). Boot-
strapping in a language of thought: A formal model of nu-

merical concept learning. Cognition, 123(2), 199–217.
Rodriguez, P. (2001). Simple recurrent networks learn

context-free and context-sensitive languages by counting.
Neural computation, 13(9), 2093–2118.

Rodriguez, P., Wiles, J., & Elman, J. (1999). A recurrent
neural network that learns to count. Connection Science,
11(1), 5–40.

Sabathiel, S., McClelland, J., & Solstad, T. (2020). A com-
putational model of learning to count in a multimodal, in-
teractive environment. In Proceedings of the meeting of the
cognitive science society.

Sarnecka, B., & Carey, S. (2006). The development of human
conceptual representations.

Sarnecka, B., & Carey, S. (2008). How counting represents
number: What children must learn and when they learn it.
Cognition, 108(3), 662–674.

Sarnecka, B., & Lee, M. (2009). Levels of number knowl-
edge during early childhood. Journal of experimental child
psychology, 103(3), 325–337.

Schwarz, G. (1978). Estimating the dimension of a model.
Annals of statistics, 6(2), 461–464.

Stoianov, I., & Zorzi, M. (2012). Emergence of a’visual
number sense’in hierarchical generative models. Nature
neuroscience, 15(2), 194–196.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A., . . . Polosukhin, I. (2017). Attention is all you
need. arXiv preprint arXiv:1706.03762.

Wagner, K., Chu, J., & Barner, D. (2019). Do children’s
number words begin noisy? Developmental science, 22(1),
e12752.

Webb, T., Dulberg, Z., Frankland, S., Petrov, A., O’Reilly,
R., & Cohen, J. (2020). Learning representations that sup-
port extrapolation. In International conference on machine
learning (pp. 10136–10146).

Webb, T., Sinha, I., & Cohen, J. (2021). Emergent symbols
through binding in external memory. In International con-
ference on learning representations.

Williams, R. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4), 229–256.

Wynn, K. (1990). Children’s understanding of counting. Cog-
nition, 36(2), 155–193.

Wynn, K. (1992). Children’s acquisition of the number words
and the counting system. Cognitive psychology, 24(2),
220–251.

Zorzi, M., & Testolin, A. (2018). An emergentist perspective
on the origin of number sense. Philosophical Transactions
of the Royal Society B: Biological Sciences, 373(1740),
20170043.

Acknowledgements
This project / publication was made possible through the sup-
port of a grant from the John Templeton Foundation. Thank
you to Steven Frankland, Simon Segert, Randall O’Reilly,
and Alexander Petrov for their helpful discussions.

