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Key points

• Metacognitive monitoring enables adaptive behavioral control by facilitating learning, error detection, resource allocation,
and effective interpersonal communication.

• Subjective confidence does not always align with the accuracy of objective decisions, but this divergence may find expla-
nations through the concept of ecological rationality.

• Computational studies of metacognition enable the formal measurement of metacognitive performance and provide
insights into the information processing that underlies the formation of confidence.

• The sensory cortex encodes the intensity and uncertainty of sensory information, on which the frontoparietal network
represents decision confidence under specific task requirements.

• Confidence remains consistent in various contexts, such as perception, memory, and value-based decision-making, facili-
tating information utilization across diverse modalities.

• The pursuit of metacognition leads us into the realm of consciousness studies, potentially shedding light on the funda-
mental origins of our conscious experiences.

Abstract

Humans are not passive recipients of information from the external world. They are “metacognitive” agents, actively engaged
in self-referential monitoring of internally expressed information. This introspective insight in turn enables proactive
behavioral adjustments, facilitating efficient learning, preventing erroneous actions, and promoting information exchange
with others. The study of metacognition has witnessed a recent expansion, incorporating a fusion of computational
modeling, neuroimaging, machine learning techniques, and other interdisciplinary approaches. This article serves as an
invitation for readers to explore the introspective realm of metacognition, providing an overview of the latest research
findings.
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Introduction

Flexible and adaptive behavior often requires the consideration not only of events in the external world, but also one’s own internal
mental processes. For example, consider the process of deciding how long to study for an upcoming test, based on a self-assessment
of one’s own understanding. This process of reflecting on and regulating one’s cognitive processes is commonly known as metacog-
nition (e.g., Brown, 1978; Fleming et al., 2012; Flavell, 1979; Nelson and Narens, 1994).

Research on metacognition has been initiated in multiple fields of behavioral science, including perceptual psychophysics,
experimental pedagogy, and cognitive psychology (Clarke et al., 1959; Flavell, 1971; Koriat et al., 1980; Nelson and Narens,
1990). While findings across these fields are interrelated and share many commonalities, the breadth of scientific knowledge on
metacognition is extensive.

This article specifically focuses on the matter of decision confidence, which refers to a subjective estimate of the likelihood that
a decision will be correct. Since decision confidence is a fundamental concept that underlies various metacognitive functions,
placing emphasis on it provides the current article with an appropriate scope and structure that extends across related disciplines.
But this also means that we would unfortunately be less focused on other important aspects of metacognition, such as those
involved in top-down control (Nelson and Narens, 1990, 1994). Those topics may be covered better in other articles of this volume,
such as those about attention and cognitive control.

Studying decision confidence is important for at least two reasons. First, the subjective experience of confidence is underpinned
by unique computational and neural mechanisms that differ from those involved in objective decision-making (e.g., King and
Dehaene, 2014; Shekhar and Rahnev, 2021a). Second, decision confidence has practical significance both for the adaptive control
of behavior and information exchange between individuals (e.g., Bahrami et al., 2010; Boldt et al., 2019; Cortese, 2022). In the
subsequent sections, we delve deeper into these reasons, highlighting the multifaceted implications of decision confidence. By
exploring the internal realm of metacognitive introspection, intriguing research avenues emerge that go beyond the classical para-
digm of treating decision-making agents as mere stimulus-response devices.

Subjective confidence versus objective decision

Traditional research on decision-making, especially perceptual psychophysics, has concentrated on investigating how individuals
understand the external world. It aims to describe the relationship between the external input individuals receive and the decisions
they make based on that input. This type of decision-making is commonly referred to as objective decision-making or type-1 judg-
ment. In addition to objective decision-making, individuals possess the capacity to assess their own internal states, as exemplified by
confidence ratings. This self-referential assessment is referred to as metacognitive decision-making or type-2 judgment (Clarke et al.,
1959; Galvin et al., 2003).

While these terms are primarily used in the field of perceptual decision-making, similar concepts have been widely applied in
other domains, such as the object-level versus meta-level distinction introduced in memory research (Nelson and Narens, 1990,
1994). Although this dichotomous perspective may appear as a simplification of the problem, it carries an important implication
that lays the ground for scientific research on metacognition. That is, the problem of subjective introspection, which may seem
elusive on its own, can be characterized in its relation to objective decisions (Clarke et al., 1959; Galvin et al., 2003; Nelson and
Narens, 1994).

Importantly, a growing body of evidence has shown that confidence is not always a straightforward reflection of objective deci-
sion accuracy (e.g., Shekhar and Rahnev, 2021a; Windschitl and Chambers, 2004; Zylberberg et al., 2012). A well-known example is
the so-called hard-easy effect, where decision-making agents tend to be under confident in easy tasks and overconfident in difficult
tasks (Baranski and Petrusic, 1994; Griffin and Tversky, 1992). Furthermore, through behavioral manipulations, brain stimulation,
or lesions, decision confidence can be selectively influenced while the accuracy of objective decisions remains unaffected (Fleming
et al., 2014; Maniscalco and Lau, 2015; Rounis et al., 2010; Ruby et al., 2018). Strikingly, selective effects on confidence have also
been demonstrated in animal models, through both behavioral manipulations and pharmacological interventions (Lak et al., 2014;
Miyamoto et al., 2017; Odegaard et al., 2018; Stolyarova et al., 2019).

These findings emphasize that subjective confidence is not merely a byproduct of decision-making but rather a distinct compo-
nent, stimulating the investigation of its underlying mechanisms. Moreover, while these observed discrepancies may suggest an
apparently suboptimal nature of the metacognitive system, in fact they could also have a rational basis (Miyoshi and Lau, 2020;
Webb et al., 2023). By studying the underlying rationale behind these dissociations, we may gain valuable insights into the potential
functional role of conscious introspection (Michel, 2023; Morales et al., 2022; Peters, 2022).

Functional roles of confidence

Cognitive functions such as perception, memory, learning, and decision-making are not isolated subsystems that operate on their
own. Instead, they are likely regulated by a process of self-directed metacognitive introspection. According to Nelson and Narens
(1994), the regulatory functions of metacognition can be categorized into two main components, monitoring and control. Moni-
toring involves gathering information at the object level, while control entails adjusting ongoing object-level processing based on
the acquired information. Confidence, therefore, corresponds to the monitoring of the likelihood that one’s decision is correct,
which may offer a foundation for adaptive behavioral control.
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The influence of confidence, along with related introspective processes, on behavioral adjustments has been studied initially
within the field of educational psychology. Researchers in this field demonstrated how individuals allocate their learning time based
on estimations of task difficulty and their own knowledge level (e.g., Lovelace, 1984; Son andMetcalfe, 2000; Thiede and Dunlosky,
1999).

In recent years, the functional roles of confidence have been demonstrated across broader fields of behavioral science (e.g., Boldt
and Gilbert, 2019; Rollwage et al., 2020; Rollwage and Fleming, 2021). For example, confidence has been identified as a mediator in
the information exploration-exploitation trade-off, helping individuals strike a balance between seeking new information and
exploiting familiar resources (Boldt et al., 2019). Confidence also mediates multi-sensory cue integration, where visual stimulation
that leads to higher subjective confidence exerts greater influence on auditory perception (Gao et al., 2023). Confidence can also
serve as a priority signal, guiding individuals to prioritize tasks they feel more confident about (Aguilar-Lleyda et al., 2020). Addi-
tionally, confidence has shown potential as a teaching signal for reinforcement learning, enabling learning without the need for
explicit rewards (Daniel and Pollmann, 2012; Guggenmos et al., 2016; Cortese et al., 2020). Furthermore, dysfunction in metacog-
nitive regulatory functions has been associated with conditions such as addiction and schizophrenia (Hoven et al., 2019; Rouault
et al., 2018a; Rouy et al., 2021). It is therefore likely that the study of decision confidence will yield insights into these pathologies,
which could aid in understanding their underlying mechanisms.

In addition to its role in adjusting one’s own behavior, confidence itself holds substantial importance in information transmis-
sion within a social context. In situations involving collective decision-making with multiple individuals, weighting the opinions of
each person based on their confidence levels has been shown to lead to more accurate decision-making (Bahrami et al., 2010).
Furthermore, in the context of collecting eyewitness testimony on crime scenes, the confidence expressed by witnesses is considered
a crucial indicator of the testimony’s credibility (Seale-Carlisle et al., 2019; Wixted andWells, 2017). Consequently, guidelines have
been explored to ensure appropriate methods for collecting and evaluating eyewitness testimony with confidence rating (Wells
et al., 2020; Colloff et al., 2021).

As evident from these examples, confidence plays crucial roles in guiding adaptive behavior, operating through computational
mechanisms separate from those for objective decision-making. The study of confidence extends beyond the conventional research
paradigm of decision-making and encompasses a broader set of research areas, including both laboratory investigations and real-
world applications.

Need for theoretical frameworks

The use of theoretical frameworks is essential in studying metacognition. Distinguishing between the most promising frameworks
and models is seen as central to the progress of the field (Rahnev et al., 2022). These frameworks, rooted in probabilistic modeling,
are employed because decision-making in living organisms is inherently subject to uncertainty. They allow researchers to quanti-
tatively assess task performance and draw statistical inferences about the underlying processes related to metacognition. As a result,
they facilitate a continuous cycle of empirical testing and theory development.

Signal detection theory

The signal detection theory (SDT) originated as a method for evaluating radar systems that distinguish meaningful signals from
random noise. By the early 1950s, it was adapted for experimental psychology, providing a framework to describe stochastic
decision-making behaviors under uncertainty (Peterson et al., 1954; Tanner and Swets, 1954).

SDT assumes that sensory input from the external world gives rise to an internal response, represented as a latent variable for
decision-making. Due to inherent noise in the biological brain, even the same sensory input can generate responses of varying
strength. Fig. 1 gives a SDT description of a decision-making task, such as determining whether a visual stimulus is moving left
or right against a noisy background. According to the stimulus direction, latent variables across multiple trials can be described
by a pair of normal distributions, representing the internal evidence for rightward versus leftward movement. A decision of “right”
is made for those trials where observed evidence exceeds an internal criterion value (solid vertical line in Fig. 1).

The criterion separates the density of the distributions into four regions, which correspond to the probabilities of different
response outcomes (true left, false left, false right, true right). Inversely, by analyzing human response rate data, one can estimate
the model parameters and evaluate the sensitivity of objective decision-making as the distance between the two distributions,
referred to as d’ (Green and Swets, 1966; Macmillan and Creelman, 2005).

In addition, the SDT framework provides methods for describing how people rate their decision confidence. One of these
methods involves using the distance of a latent variable from the objective decision criterion as a basis for confidence (e.g., Galvin
et al., 2003). Fig. 1 illustrates this concept, where criteria for confidence rating (dashed lines) are depicted together with the objective
decision criterion (solid line). These criteria partition the distribution density into eight regions, each representing the probability of
its associated response outcome (4 response classes mentioned above � 2 classes of confidence).

Through this modeling, one can quantify the metacognitive sensitivity of observers, which indicates how well their confidence
distinguishes between their own correct and incorrect decisions. Namely, by analyzing human confidence data for correct and incor-
rect decisions, metacognitive sensitivity can be measured as the distance between two latent distributions, known as meta-d’
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(Maniscalco and Lau, 2012; Fleming and Lau, 2014). The significance of meta-d’ lies in its direct comparability to d’, allowing for the
measurement of metacognitive sensitivity in relation to objective decision accuracy.

While the meta-d’ model is currently considered the standard for metacognitive measurement, recent papers have introduced
a variety of measurement models that expand upon the classical SDT framework (Boundy-Singer et al., 2023; Dayan, 2023; Gug-
genmos, 2022; Miyoshi and Nishida, 2022; Miyoshi et al., 2022; Shekhar and Rahnev, 2021b). These models can be broadly clas-
sified into descriptive or process-model approaches. The descriptive approach, including the meta-d’ framework, offers an ad-hoc
analysis of observed data, whereas the process-model approach aims to quantify metacognitive performance by explicitly specifying
the process through which confidence is computed.

Regardless of the chosen approach, it is essential for metacognition measures to possess specific desirable properties. As in the
case of meta-d’, metacognitive measures should be disentangled from objective decision accuracy (as well as other potential con-
founding factors like individuals’ propensity for high or low confidence ratings). Additionally, these measures should exhibit robust
validity and reliability. Rahnev (2023) examined various metacognitive measures and identified their respective strengths and limi-
tations. He found that none of these measures fully satisfied all the desired properties. Furthermore, no measurement approach at
present exhibited a clear advantage over the meta-d’ framework, rendering it a reasonable interim option. The measurement of
metacognitive performance remains a topic of lively debate, and more research is anticipated in the future.

Sequential sampling framework

Another prominent framework focuses on the temporal accumulation of decision evidence (e.g., Ratcliff et al., 2016). A leading
example is the drift diffusion model (Ratcliff, 1978), depicted in Fig. 2 within the context of left/right direction discrimination.
In this model, internal evidence is added up at each time step, and a decision is reached when the cumulative sum crosses thresholds
set for “left” and “right” decisions.

Fig. 1 Signal detection theory model applied to left/right direction discrimination. The distribution depicted on the left (or right) represents the trial-
by-trial internal evidence under the physical presence of leftward (or rightward) motion. In each trial, a “left” (or “right”) decision is made if observed
evidence falls left (or right) of a decision criterion, depicted as a solid vertical line. The distance from the decision criterion can serve as an indicator
of decision confidence, and dashed vertical lines illustrate the criteria to assign low or high confidence ratings.

Fig. 2 Drift diffusion model applied to left/right direction discrimination. At each time step, noisy internal evidence about stimulus direction evolves
with the positive (or negative) sign favoring rightward (or leftward) movement. A decision is reached when accumulated evidence crosses upper or
lower decision boundaries (set at � 2 in this depiction), representing the “right” and “left” decisions. Here, the means and the standard deviation of
the step-by-step evidence variability are set at � 0.005 and 0.1, respectively. This corresponds to assuming a SDT model of d0 ¼ 0.1 for each time
step. The accumulation process constitutes an optimal decision variable, tracking the log-likelihood ratio (see section Bayesian confidence) in this
signal detection process over all previous time steps.
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This accumulation process aligns with the sequential probability ratio test in statistics, which minimizes expected time steps
required to achieve a predefined level of accuracy (e.g., Bogacz et al., 2006). The diffusion model carries significant methodological
implications, particularly for neuroscience research, suggesting that the temporal dynamics of optimal decision-making can be rep-
resented by unidimensional quantity, such as cumulatively increasing neural firing (Gold and Shadlen, 2000, 2001; Kiani and Shad-
len, 2009).

The simple diffusion model, however, encounters a limitation when it comes to explaining decision confidence. In its original
form, evidence accumulation in each trial stops at the constant threshold value, resulting in no meaningful variation for confidence
ratings. Consequently, this limitation has inspired an idea that additional evidence gathering after making a decision contributes to
the generation of confidence (Pleskac and Busemeyer, 2010). The concept of post-decisional confidence construction has received
robust support from empirical studies (Moreira et al., 2018; Yu et al., 2015), guiding subsequent investigations of confidence
construction mechanisms (Fleming and Daw, 2017; Maniscalco et al., 2021; Navajas et al., 2016). Nevertheless, other research
suggests that it is unlikely that confidence is formed exclusively after a decision has been made and instead confidence is likely
already being computed during decision formation (Dotan et al., 2018; Chen and Rahnev, 2023; Xue et al., 2023a).

Importantly, diverse model families are present within the sequential sampling framework (e.g., Brown and Heathcote, 2008;
Ratcliff and Starns, 2013; Tajima et al., 2019). While the diffusion model family typically assumes a single accumulator that
integrates evidence from all stimuli, another prominent family, known as race models, employs a separate accumulator for each
stimulus. In race models, each accumulator aims to reach its own threshold, and a decision is made when one of the accumulators
reaches its threshold (e.g., Ratcliff et al., 2016).

The race model family has been used to explain confidence since Vickers (1979), proposing that the balance between winning
and losing accumulators determines confidence. More recently, efforts have been made to expand race models to enhance our
understanding of confidence formation processes. Proposed models include those that incorporate post-decisional evidence collec-
tion (Pereira et al., 2020), models that consider the impact of response time (Kiani et al., 2014), and models that can be adapted to
multi-alternative choice problems (Ratcliff and Starns, 2013).

The sequential sampling framework offers a means for capturing the temporal dynamics of decision-making processes. Besides,
the temporal aspect of metacognitive computation has garnered significant attention in recent neuroscience studies (Cai et al., 2022;
Shekhar and Rahnev 2018). Integrating these approaches holds the potential to enhance our understanding of the mechanisms
governing confidence generation.

Bayesian confidence

Computational studies of metacognition have sparked a widespread debate concerning whether confidence is calculated through
formal Bayesian inference (e.g., Adler andMa, 2018; Aitchison et al., 2015; Khalvati et al., 2021; Li and Ma, 2020; Xue et al., 2023b).
Central to Bayesian inference are two fundamental components, the prior probability and the likelihood function, which corre-
spond to the observer’s internal model of the world.

In a binary decision-making situation, the prior probability refers to a subjective belief regarding the occurrence of each stimulus
scenario before observing an internal evidence value (e.g., stimuli A and B each having a 50% chance of occurring). Likelihood refers
to the probability of observing a specific value of internal evidence under a given stimulus scenario. In the SDT example of Fig. 1, the
height of each distribution represents the likelihood of internal evidence under its associated stimulus scenario (i.e., stimulus
moving left or right). Once internal evidence is obtained, the Bayesian observer calculates the likelihood ratio, the relative heights
of the two distributions at the location of the observed value. The posterior probability of a decision being correct is derived by
combining the prior probability and the likelihood ratio, which is known as Bayesian confidence (e.g., Pouget et al., 2016).

Bayesian inference has often been discussed in relation to the concept of optimality (Ma, 2010; Rahnev and Denison, 2018). A
computation is said to be optimal when it maximizes a particular performance measure. For instance, Bayesian decision-making
based on the true knowledge of prior probabilities and likelihoods leads to maximized objective decision accuracy. Likewise,
Bayesian confidence, when derived with true knowledge, is optimal in terms of the calibration of metacognitive monitoring since
it reflects the true posterior probability of a decision being correct. The agent of performing Bayesian inference with true knowledge
is commonly referred to as the Bayesian ideal observer (e.g., Green and Swets, 1966).

It is important to note, however, that Bayesian inference does not always equate to optimality (Ma, 2010). For example, by
considering decision-makers with incorrect knowledge of prior probabilities and likelihoods, diverse suboptimal behaviors can
be explained within the framework of Bayesian inference (Fleming and Daw, 2017; Hu et al., 2023; Khalvati et al., 2021; Ko
and Lau, 2012).

Bayesian inference, in exchange for its flexible descriptive power, imposes challenges on observers by requiring inverse inference
through the internal world model. Consequently, studies have explored whether human confidence rating is derived from compu-
tationally demanding Bayesian inference or simpler computations. Researchers typically manipulate distributions of stimulus inten-
sity across trials and test whether participants exhibit Bayesian inference utilizing the distributional knowledge. The findings are
somewhat mixed, but they suggest that human confidence rating does not fully conform to Bayesian inference (Adler and Ma,
2018; Aitchison et al., 2015; Li and Ma, 2020; Locke et al., 2022; Xue et al., 2023b). This means that even in controlled laboratory
settings, where observers could ideally acquire complete knowledge of underlying distributions, human observers do not always
adhere to Bayesian norms.
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In the real world, obtaining accurate internal models for countless decision-making problems is exceedingly challenging. Conse-
quently, greater emphasis is expected on heuristic computations, or Bayesian inference might be applied upon approximate knowl-
edge of some fundamental structure of the world.

Non-Bayesian computations for confidence

A significant body of research has supported the notion that confidence is based on simpler, non-Bayesian computations (some-
times termed “heuristics”; Miyoshi et al., 2018; Navajas et al., 2017; Rahnev et al., 2011; Zawadzka et al., 2017; Zylberberg
et al., 2012). A prominent example is a phenomenon known as positive evidence bias (Gao et al., 2023; Koizumi et al., 2015; Man-
iscalco et al., 2016; Samaha et al., 2017, 2019). This bias is typically observed in comparing two experimental conditions with
different signal intensities but the same signal-to-noise ratio. Despite both conditions usually resulting in consistent decision accu-
racy, the condition of stronger stimulus intensity generally leads to higher subjective confidence. This phenomenon is often consid-
ered indicative of non-Bayesian confidence formation because Bayesian inference, predicated on true distributional knowledge of
these conditions, produces a constant level of confidence in cases of matched decision accuracy.

The positive evidence bias, together with corroborative neurobiological findings (Cortese et al., 2016; Odegaard et al., 2018;
Peters et al., 2017; Stolyarova et al., 2019), has prompted the notion that confidence primarily arises from the evidence favoring
the chosen option, known as a response-congruent evidence (RCE) rule (Maniscalco et al., 2016; Miyoshi et al., 2018; Zylberberg
et al., 2012). It may seem counterintuitive that our metacognitive system does not equally utilize all sources of information.
However, Miyoshi and Lau (2020) have shown that the RCE rule leads to accurate metacognition when facing the typical evidence
structure inherent in various decision-making scenarios (i.e., unequal variance between target and non-target evidence). This finding
highlights a crucial avenue for metacognition research, emphasizing the importance of ecological rationality in information
processing.

Interestingly, the positive evidence bias can also be explained through Bayesian inference if one assumes the fundamental
evidence structure characterized by unequal variance (Miyoshi and Lau, 2020; Webb et al., 2021, 2023). In this case, Bayesian infer-
ence operates upon approximate knowledge of natural information structure rather than precise knowledge of specific experimental
conditions. Thus, apparently non-Bayesian confidence computations may be viewed in Bayesian terms when considering adapta-
tion to natural representational structures instead of artificial laboratory settings.

It is important to note that there could be various forms of non-Bayesian confidence computations other than the RCE rule (e.g.,
Boundy-Singer et al., 2023; Gao et al., 2023; Guggenmos, 2022; Navajas et al., 2017; Rahnev et al., 2011; Shekhar and Rahnev,
2022), and not all of them may find a connection to Bayesian confidence. Thus, further research is necessary to unravel the precise
computations underlying confidence. Nonetheless, regardless of the approach one takes, acknowledging the rational basis of infor-
mation processing holds great potential for advancing our understanding of metacognitive systems.

Neural network models of decision confidence

A variety of neural network models have been proposed to explain different aspects of decision confidence. Most notably, these
include models that explain how decision confidence may be implemented in dynamic neural circuits (Maniscalco et al., 2021;
Song et al., 2017), and models that utilize deep learning techniques to model decision confidence in the context of naturalistic
stimuli such as images (Rafiei and Rahnev, 2022; Webb et al., 2021; Webb et al., 2023).

An early effort in this domain comes from the work of Cleeremans et al. (2007), who presented a two-part neural network
model, in which a higher-order network learned to estimate the reliability of a first-order network’s decisions. More recent work
has focused on how decision confidence might be computed in dynamic neural circuits. Song et al. (2017) used reinforcement
learning to train recurrent neural networks on a post-decision wagering task. They found that neurons in the network’s recurrent
hidden layer learned to perform a form of temporal evidence accumulation (see section Sequential sampling framework), thus
implicitly represented decision confidence, similar to the observed behavior of individual neurons in decision-making brain regions
(Kiani and Shadlen, 2009).

One limitation of these results is that they do not address cases in which confidence and objective decisions dissociate, such as
the positive evidence bias (see section Non-Bayesian computations for confidence). To account for such dissociations, Maniscalco
et al. (2021) presented a recurrent accumulator model consisting of two distinct types of accumulators. One type of accumulator
represented the cumulative evidence in favor of a particular stimulus type, independent of other stimulus types, while another type of
accumulator represented the relative evidence in favor of one stimulus type over others. This model was able to account for previ-
ously observed neural dissociations between decision-making and confidence, by modeling decisions using the relative accumu-
lator units, and confidence using the independent accumulator units.

Other recent work has focused on the question of how decision confidence might be computed from naturalistic stimuli, such as
real-world images. Webb et al. (2021, 2023) presented a deep neural network model trained both to classify realistic images, and to
predict its own probability of being correct. Surprisingly, this model was found to capture dissociations between confidence and
objective decisions, a result that depended on specific aspects of the stimuli on which the model was trained (e.g., variable image
contrast). Rafiei and Rahnev (2022) introduced a model that combines a deep neural network architecture with accumulator units
inspired by classic race models (Vickers, 1979; see section Sequential sampling framework). Importantly, the weights of the
network were probabilistic, enabling the model to capture the process of noisy temporal evidence accumulation. This model
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illustrates how deep neural network modeling techniques can be fruitfully combined with the sequential sampling framework,
allowing the model to both operate over real-world images and account for temporal features of decision-making such as response
time.

Neural correlates of confidence

The theoretical frameworks we have explored provide valuable insights for neuroscience studies of metacognition. They stress the
need to differentiate neural substrates related to confidence from those associated with objective decision-making. Additionally,
studies can be designed aiming at neural correlates concerning the level of confidence or those associated with metacognitive sensi-
tivity. By combining brain recording and computational modeling, we may achieve a deeper understanding of the neural founda-
tions of metacognition.

Prefrontal and parietal regions

Neural processing for metacognition should involve the management across different processing modules to meet a variety of task
demands. The prefrontal cortex (PFC) emerges as a prime candidate for this role, given its intricate connections with diverse areas
responsible for perception, memory, emotion, and more (Barbas, 1995; Fuster, 2008; Goldman-Rakic, 1988; Petrides, 2000).
Consistent with this idea, early studies have implicated frontal-parietal networks in playing significant roles in conscious
introspection (Christoff and Gabrieli, 2000; Dehaene et al., 2003; Del Cul et al., 2009; Fletcher and Henson, 2001; Lau and Passing-
ham, 2006; Lau and Rosenthal, 2011; Shimamura, 2000; Simons et al., 2010). These endeavors have prompted further investiga-
tions into frontoparietal regions as potential loci for metacognition.

Pioneering evidence has linked individual differences in metacognitive sensitivity to the anatomy of specific brain regions. A
positive correlation has been identified between the gray matter volume in the anterior PFC and metacognitive sensitivity for
perceptual discrimination (Fleming et al., 2010; McCurdy et al., 2013). Metacognitive sensitivity was also associated with the white
matter microstructure in the genu of the corpus callosum, which connects to the anterior and orbital regions of the PFC (Fleming
et al., 2010). Notably, these anatomical measures did not correlate with objective decision accuracy, highlighting the selective
involvement of the PFC networks in metacognitive monitoring.

Functional brain recordings have further substantiated the pivotal role of the frontoparietal networks in metacognition (e.g.,
Cortese et al., 2016; Geurts et al., 2022; Hoven et al., 2022; Masset et al., 2020; Mazor et al., 2020; Morales et al., 2018; Pereira
et al., 2020; Peters et al., 2017). For example, through behavior decoding with implanted electrocorticography electrodes, Peters
et al. (2017) demonstrated spatiotemporally distinct neural representations for confidence and objective decisions. In a face/house
discrimination task, the confidence level was successfully decoded around 450 ms following stimulus onset, contributed by
multiple regions including the frontoparietal area. Conversely, the decoding of objective decision occurred approximately
250 ms after stimulus onset and predominantly relied on electrodes situated in the occipital region. Moreover, confidence mani-
fested a stronger reliance on neural evidence for chosen than unchosen options, consistent with the RCE rule (see section Non-
Bayesian computations for confidence).

Additional evidence comes from a study utilizing neurofeedback through functional magnetic resonance imaging (fMRI) (Cor-
tese et al., 2016). In a random dot motion discrimination task, Cortese et al. constructed a confidence decoder based on multivoxel
activation patterns in lateral prefrontal and inferior parietal areas. By manipulating activation in these regions via neurofeedback,
they demonstrated bidirectional changes in confidence levels without affecting objective decision accuracy. This selective effect
clearly demonstrates the causal involvement of frontoparietal areas in metacognitive monitoring.

The causal involvement of frontoparietal regions in metacognition is further supported by studies employing transcranial
magnetic stimulation (TMS) (Cai et al., 2022; Luzio et al., 2022; Martin et al., 2023; Rahnev et al., 2016; Rounis et al., 2010; Ryals
et al., 2016; Ruby et al., 2018; Shekhar and Rahnev, 2018; Ye et al., 2018; Xue et al., 2023a). An early study showed that offline TMS
to the dorsolateral PFC decreased metacognitive sensitivity without compromising perceptual decision accuracy (Rounis et al.,
2010; Ruby et al., 2018). Furthermore, Shekhar and Rahnev (2018) reported that online TMS to the dorsolateral PFC lowered
the confidence level, while stimulation to the anterior PFC increased metacognitive sensitivity, suggesting distinct roles of PFC
subregions. However, the effect of magnetic stimulation can vary based on stimulation protocols or task characteristics (Cai
et al., 2022; Luzio et al., 2022), indicating the need for further investigations into the specific roles of PFC subregions.

Further evidence comes from studies employing pharmacological stimulation in animals. Lak et al. (2014) inactivated rats’ orbi-
tofrontal region by injecting GABA-A agonist muscimol during an olfactory discrimination task. The inactivation resulted in
a disruption of metacognitive sensitivity while perceptual decision accuracy remained unaffected. Similarly, Miyamoto et al.
(2017) injected muscimol into the posterior supra principal dimple and the anterior supplementary eye field of macaques’ brain
during a recognition memory task. The inactivation of these regions impaired metacognitive sensitivity without impacting objective
memory performance, further substantiating the causal involvement of frontal networks in metacognitive monitoring.

Researchers have also investigated the involvement of frontoparietal sensorimotor networks in representing decision confidence
(Gold and Shadlen, 2000; Kiani and Shadlen, 2009; Middlebrooks and Sommer, 2012). These studies commonly utilized tasks
where monkeys indicated the direction of random dot motion by directing their gaze toward the corresponding direction. In the
frontal eye field (FEF) and lateral intraparietal cortex (LIP), neural firing patterns were observed that presumably reflect the temporal
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accumulation of internal decision evidence (Gold and Shadlen, 2000; Kiani and Shadlen, 2009). Furthermore, the firing rate in the
LIP and supplementary eye fields (SEF) correlated with trial-to-trial variations of confidence levels (Kiani and Shadlen, 2009; Mid-
dlebrooks and Sommer, 2012). These findings, combined with the theoretical framework of sequential sampling, have led to the
view that objective decision and confidence may be represented in the sensorimotor circuits as a unified Bayesian probability (Kiani
and Shadlen, 2009; Kiani et al., 2014; Meyniel et al., 2015).

One thing to keep in mind is that these findings on the sensorimotor networks could potentially be influenced by objective deci-
sion performance. Odegaard et al. (2018) conducted a subsequent study to address this possibility. They experimentally dissociated
objective decision accuracy from confidence levels, and recorded neural activity in the superior colliculus, which is connected to the
LIP and SEF. The firing rate in this region primarily reflected subjective confidence rather than integrative Bayesian probability,
which aligns with non-Bayesian views of confidence formation.

Involvement of sensory regions

When examining the neural basis of confidence, the sensory cortex often comes up as a key area of interest. One noteworthy finding
is that TMS applied to the occipital cortex increased confidence levels in a visual discrimination task (Rahnev et al., 2012). This
phenomenon can be explained by considering that the distribution of internal sensory evidence, shown in Fig. 1, becomes noisier
due to the magnetic stimulation. Namely, the increased variance of the distribution leads to greater probability density surpassing
the criterion for high confidence judgment. A similar pattern has been observed when attention is diverted from visual stimuli using
spatial cueing (Rahnev et al., 2011). In this case, inattention may result in noisier evidence distributions, again causing greater
density to exceed the high confidence criterion. Therefore, it can be inferred that TMS and attentional cueing do not directly alter
the representation of confidence per se, but rather interfere with upstream sensory processing, subsequently influencing the reported
level of confidence.

To gain a clearer insight into the involvement of sensory regions, it may be helpful to consider the separation of sensory uncer-
tainty and decision confidence (Bang and Fleming, 2018; Pouget et al., 2016). For instance, in random dot motion discrimination,
the area MT encodes information about the estimated motion direction and its associated uncertainty (Maunsell and Van Essen,
1983). Consider an example where the motion direction is represented as 15 � 10 degrees, with 0 degrees indicating vertical upward
motion. Here, the observer may exhibit limited confidence when tasked with determining whether the motion is clockwise or coun-
terclockwise relative to the vertical upward direction (0 degrees). Conversely, greater confidence would accompany the assertion
that the perceived motion is counterclockwise concerning the rightward direction (90 degrees). Furthermore, when the observer
reports the estimated direction as a continuous value rather than discriminating it against a specific direction, the sensory uncer-
tainty of �10 degrees would assume the role of decision confidence itself. In this manner, sensory information in upstream brain
regions may be reconstructed based on specific task demands, leading to confidence representation in higher brain regions.

The concept of sensory uncertainty accords with the theory of neural population coding (e.g., Abbott and Dayan, 1999; Ma et al.,
2006; Paradiso, 1988; Pouget et al., 2002; Salinas and Abbott, 1994; Walker et al., 2020). In the primary visual cortex, for instance,
distinct ensembles of neurons exhibit varying sensitivities to diverse stimulus orientations (e.g., Hubel andWiesel, 1962; Ferster and
Miller, 2000). According to the population coding theory, the combined activity of these neurons enables the representation of
stimulus orientation and the sensory uncertainty associated with it. Recently, for example, Walker et al. (2020) demonstrated
a successful application of a deep neural network to decode orientation information from the population activity in the primary
visual cortex of macaques. This model accurately accounted for the monkeys’ orientation classification behavior by considering
both the decoded orientation information and its corresponding uncertainty. This finding fortifies the presence of sensory uncer-
tainty representation embedded within the population activity of the sensory cortex.

Other contributing regions and factors

In addition to the insights above, numerous brain regions and cognitive factors have been identified as contributors to confidence
formation. Regions maintaining close communication with the frontoparietal network have been implicated, such as the dorsal
pulvinar (Komura et al., 2013) and the anterior cingulate cortex (Stolyarova et al., 2019). Moreover, investigations have under-
scored the involvement of the motor system (Faivre et al., 2020; Gajdos et al., 2019; Hobot et al., 2020; Pereira et al., 2020).
For instance, Fleming et al. (2015) revealed that the TMS applied to the premotor cortex, for activating the response tied to the
unchosen option, reduced confidence for the correct response. Furthermore, the influence of incentive motivation has been indi-
cated, with the possible involvement of the ventromedial PFC (Hoven et al., 2022; Lebreton et al., 2018, 2019). The literature
has also explored other pertinent factors, including arousal (Allen et al., 2016; Hauser et al., 2017), positive mood (Koellinger
and Treffers, 2015), and the level of worry (Massoni, 2014).

These studies underscore that confidence is more than the estimated probability of a decision being correct. Rather, it manifests
as a subjective experience shaped by a complex interplay of various factors. By delving into the mechanisms of its emergence, we
may further enrich our understanding of the fundamental essence of confidence.
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Metacognition across different cognitive domains

Our primary focus thus far has centered on metacognition for perceptual judgments. Nonetheless, research concerning metacogni-
tion has garnered substantial interest across a spectrum of cognitive domains.

Metamemory

The domain of memory research has a distinguished focus on metacognitive behavior. As mentioned earlier, studies in applied
educational psychology have pursued functional roles of metacognition, such as optimizing learning time based on the self-
assessment of item difficulty (e.g., Lovelace, 1984; Son and Metcalfe, 2000; Thiede and Dunlosky, 1999). A noteworthy concept
in this context is prospective metacognition, which involves predicting future memory performance based on the present state
of learning. The research methodologies and frameworks developed in these studies have extended beyond the scope of metame-
mory, yielding significant contributions to the broader landscape of metacognition studies (e.g., Nelson and Narens, 1990, 1994).

Another avenue of metamemory research has originated from cognitive psychology and neuroscience. Studies have illuminated
two types of memory, explicit and implicit memory, characterized by the presence or absence of introspective memory awareness
(e.g., Tulving, 1972, 1985; Squire and Zola-Morgan, 1988; Squire and Dede, 2015). Essential to explicit memory is the hippo-
campus and its adjacent regions, with damage to these areas impairs conscious memory introspection (Cohen and Squire, 1980;
Scoville and Milner, 1957; Annese et al., 2014). Damage to the frontal cortex also disrupts explicit memory retrieval (e.g., Davidson
et al., 2006; Wheeler et al., 1995), further emphasizing its significance in conscious introspection.

Implicit memory encompasses various phenomena such as perceptual priming (e.g., Tulving and Schacter, 1990) and perceptual
learning (e.g., Gilbert and Li, 2012). Perceptual priming typically occurs when the same stimulus is repeatedly presented, leading to
faster stimulus processing without conscious awareness of memory retrieval. Reduced activity in sensory areas is often associated
with perceptual priming (Grill-Spector et al., 2006; Schacter et al., 2007), presumably reflecting heightened efficiency in neural
computations (e.g., Desimone, 1996). Perceptual learning emerges through iterative stimulus exposures that progressively enhance
stimulus detection or discrimination accuracy without conscious memory awareness. Perceptual learning is considered to involve
plastic changes in sensory cortical circuits (e.g., Gilbert et al., 2009; Gilbert and Li, 2012).

The coexistence of conscious and unconscious forms of memory may offer distinct adaptive advantages. Implicit memory can
guide efficient actions in familiar environments, while explicit memory enables us to mentally reconstruct events that are not
currently present, empowering mental abilities such as reasoning and future planning (Atance and O’Neill, 2001; Schacter et al.,
2017). Furthermore, our stored memories from the past are considered foundational for present experiences. Thus, theorists
have proposed a perspective on how implicit and explicit memory would interplay in shaping the subjective quality of conscious
experience (Lau et al., 2022).

Confidence rating has also been widely adopted in memory research. Particularly in recognition memory studies, scholars have
utilized SDT and sequential sampling frameworks to explore the mechanisms of memory judgment and metamemory monitoring
(e.g., Kellen and Klauer, 2015; Miyoshi et al., 2018; Osth et al., 2018; Ratcliff and Starns, 2013; Rotello et al., 2000; Wixted, 2007;
Yonelinas, 1994). Additionally, researchers have investigated the relationship between confidence rating and the accuracy of
memory judgment (e.g., Tekin et al., 2021), which carries significant implications in practical contexts such as eyewitness testimony
(Seale-Carlisle et al., 2019; Wixted and Wells, 2017).

In the realm of neuroscience, neurons in the human posterior parietal cortex have been identified to express confidence in recog-
nition memory judgment (Rutishauser et al., 2018). These neurons selectively increased their firing rate for either low or high confi-
dence. Interestingly, the activity of these confidence neurons was independent of stimulus familiarity (i.e., whether the stimulus had
been previously studied or not). Additionally, as mentioned earlier, pharmacological investigations onmonkeys revealed the critical
role of the parietal-frontal regions in accurate metamemory monitoring (Miyamoto et al., 2017).

Domain-generality of metacognitive monitoring

Further studies have delved into various domains, such as auditory perception (Ais et al., 2016; de Gardelle et al., 2016; Faivre et al.,
2018), tactile perception (Arbuzova et al., 2022; Fairhurst et al., 2018; Faivre et al., 2018; Klever et al., 2023), time perception (Yal-
lak and Balcı, 2021), and value-based decision-making (e.g., Brus et al., 2021; De Martino et al., 2013; Sepulveda et al., 2020). A key
concept underlying these studies is the potential role of confidence as a common currency, facilitating comparability across different
cognitive domains (de Gardelle and Mamassian, 2014; de Gardelle et al., 2016). By utilizing a modality-independent scale of confi-
dence, one can prioritize more reliable information when making decisions involving multisensory inputs (de Gardelle et al., 2016;
Klever et al., 2023). Moreover, subjective confidence associated with each modality plays a vital role during multisensory integra-
tion, affecting the relative weighting assigned to distinct modalities (Gao et al., 2023).

Another important question pertains to the potential shared mechanisms that underlie metacognition across diverse cognitive
domains. Studies have explored whether individuals who exhibit good metacognitive accuracy in one domain also excel in other
domains, thus addressing the domain-generality of metacognitive sensitivity (Ais et al., 2016; Faivre et al., 2018; Lee et al., 2018;
Mazancieux et al., 2020). Faivre et al. (2018) reported that individuals’metacognitive sensitivity correlated among visual, auditory,
and tactile tasks. Likewise, correlations in metacognitive sensitivity have been established between visual perception and memory
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domains (Lee et al., 2018; Mazancieux et al., 2020). These behavioral correlations suggest that confidence formation in different
domains relies, to some degree, on shared underlying mechanisms.

The positive evidence bias (see section Non-Bayesian computations for confidence) has also been observed across a range of
modalities, including visual perception, auditory perception, recognition memory, and value-based decision (Gao et al., 2023; Koi-
zumi et al., 2015; Miyoshi et al., 2018; Odegaard et al., 2018; Sakamoto and Miyoshi, 2023; Samaha et al., 2017, 2019; Zawadzka
et al., 2017). This suggests the operation of the RCE confidence rule across broad cognitive domains (Zylberberg et al., 2012; Man-
iscalco et al., 2016). As previously elaborated, the RCE computation affords efficient metacognition by aligning with the typical
information structure prevalent in various decision-making scenarios (Miyoshi and Lau, 2020). Ecological rationality of this
kind might serve as a foundation for the potential domain-generality of metacognition.

Research has also examined the neural bases of metacognition across different cognitive domains (e.g., Baird et al., 2013, 2015;
Fleming et al., 2014; Heereman et al., 2015; Rouault et al., 2018b; Ye et al., 2018). Although the frontoparietal areas are generally
considered central hubs for metacognitive monitoring, studies have implicated more nuanced involvements of their subregions. For
instance, McCurdy et al. (2013) showed that metacognitive sensitivity for visual perception correlated with the gray matter volume
in the anterior PFC, while that for recognition memory was associated with the volume in the precuneus. Additionally, in predicting
confidence for visual perception and recognitionmemory, Morales et al. (2018) demonstrated domain-specific fMRI activities in the
anterior PFC, while more broadly distributed domain-general activities were observed within the frontoparietal network. However,
findings across diverse studies are not always consistent (see Rouault et al., 2018b), necessitating further research to achieve a more
comprehensive understanding of this topic.

One consideration to note is that the generality of metacognitive sensitivity often does not hold when shifting between different
task formats (e.g., Yes/No and forced-choice formats; see Lee et al., 2018; Miyoshi and Nishida, 2022). Furthermore, even within the
realm of visual perception, distinct neural correlates of confidence have been observed for different task formats (Mazor et al.,
2020). Therefore, it is crucial to ensure a consistent task format when attempting comparisons across different cognitive domains.

Metacognition beyond simple confidence rating

The study of metacognitive monitoring gives rise to a research field that encompasses various adjacent realms. This section will
provide an overview of topics closely linked to the evaluation of confidence.

Error detection

One crucial component of metacognitive monitoring is the detection of erroneous decisions (Rabbitt, 1966; Rabbitt and Rodgers,
1977). This phenomenon is typically observed as “change of mind” behavior, where individuals swiftly amend their initial decision
after an incorrect choice. Researchers have proposed that error detection involves continuous information gathering subsequent to
the initial decision-making (Resulaj et al., 2009; van den Berg et al., 2016; Yeung and Summerfield, 2012). Within the framework of
Bayesian decision-making, this behavior can be understood as a recalibration of confidence based on post-decisional information
acquisition (Fleming and Daw, 2017). Specifically, in 2-choice tasks, the Bayesian observer can revise their initial decision once their
confidence falls below 50%.

Studies utilizing electroencephalography have identified neural markers of error detection. These markers include the error-
related negativity, a negative potential detected at frontocentral sites within 100 ms after an incorrect response. This is succeeded
by the error positivity, a positive component localized at the parietal area (Debener et al., 2005; Falkenstein et al., 1991; Gehring
et al., 1993). The error positivity has been observed only when individuals are aware of their errors, emphasizing its close associ-
ation with explicit error recognition (Nieuwenhuis et al., 2001; Yeung and Summerfield, 2012). In contrast, the connection between
error-related negativity and conscious error awareness remains somewhat inconclusive. While some studies suggest its role in influ-
encing error awareness (Kirschner et al., 2021; Wessel et al., 2011), others solely associate it with latent post-error processes (Nieu-
wenhuis et al., 2001). A close connection is inferred between error detection mechanisms and confidence formation processes, and
a seamless comprehension of these two holds the potential for further advancing the literature on metacognitive monitoring.

Visual awareness

Another commonly used metacognitive measure in visual tasks is visibility rating (e.g., Dehaene et al., 2006; Rausch and Zehetleit-
ner, 2016). Unlike confidence rating, which evaluates response correctness under specific task demands, visibility rating solely
concerns the subjective clarity of visual stimuli. Visibility and confidence closely align in detection tasks, reflecting similar facets
of visual awareness. However, high visibility may not necessarily correspond to high confidence, particularly when discriminating
subtle differences between highly visible stimuli. Consequently, studies have explored the possible interplay between visibility and
confidence (Hellmann et al., 2023; King and Dehaene, 2014; Rausch et al., 2021).

The investigation of visual awareness holds particular significance in bridging the study of metacognition to consciousness
research. This connection is exemplified by a phenomenon known as blindsight (Pöppel et al., 1973; Weiskrantz et al., 1974). Blind-
sight gained fame through the case of patient GY, who experienced damage to the left primary visual cortex, resulting in the loss of
visual awareness for stimuli presented in the right visual field (e.g., Stoerig and Barth, 2001).
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Remarkably, despite the lack of visual awareness, GY exhibited residual sensitivity in discrimination tasks within the affected
visual field (de Gelder et al., 1999; Kentridge et al., 1997; Weiskrantz et al., 1995; Zeki and Ffytche, 1998). Blindsight serves as a vital
example that distinguishes phenomenological awareness from task performance, offering a foothold for elucidating the computa-
tional and neural underpinnings of consciousness (Ko and Lau, 2012; Miyoshi and Lau, 2020; Persaud et al., 2011; Schmid et al.,
2010; Yoshida and Isa, 2015). Nonetheless, diverse perspectives exist regarding the relevance of blindsight to consciousness
research, and lively discussions are still ongoing (Lau, 2022; Michel, 2023; Michel and Lau, 2021; Peters, 2022; Phillips, 2021).

Perceptual reality monitoring

Another key concept linking metacognition and consciousness is perceptual reality monitoring. Research on consciousness involves
the comparison of different theories regarding the prerequisites for consciousness to arise (e.g., Baars, 1993; Brown et al., 2019;
Dehaene et al., 2017; Lamme, 2006). One crucial point of debate is whether self-monitoring is necessary for the occurrence of
conscious perception (e.g., Lau and Rosenthal, 2011). A recent theory posits that automatic self-monitoring of sensory information
veracity plays a pivotal role in giving rise to conscious awareness (Lau, 2019; Lau et al., 2022). It is proposed that higher-order brain
regions, such as the prefrontal and parietal regions, engage in an automatic assessment of the veracity of representation patterns in
sensory regions; conscious perception arises only when these patterns are deemed veridical signals resulting from external
stimulation.

Recent studies have demonstrated that external visual input and internally generated mental imagery are associated with similar
activation patterns in the sensory cortex (Dijkstra et al., 2019; Pearson, 2019; Shen et al., 2019; Xie et al., 2020). However, mental
imagery is rarely confused with external input, except in cases of hallucinations or dreams (Hahamy et al., 2021; Koenig-Robert and
Pearson, 2020). Generally, conscious visual awareness arises exclusively from external visual input, presumably due to the workings
of perceptual reality monitoring mechanisms (Dijkstra et al., 2022). Nevertheless, it is possible to deliberately create situations that
induce confusion between the two, enabling investigations into the mechanisms underlying perceptual reality monitoring and
conscious awareness (Dijkstra et al., 2021; Dijkstra and Fleming, 2023; Perky, 1910).

Emerging studies have introduced potential computations that underlie perceptual reality monitoring, such as generative adver-
sarial processing (Cushing et al., 2023; Gershman, 2019). Moreover, the frontoparietal regions have been implicated as a neural
basis for perceptual reality monitoring, which overlaps with the known neural correlate of confidence (Dijkstra and Fleming,
2023; Lau et al., 2022). One question concerns the relationship between perceptual reality monitoring and the formation of deci-
sion confidence. Confidence may appear distinct from automatic perceptual reality monitoring due to its conscious nature, but its
formation appears effortless and incidental to sensory processing. If reality monitoring relies on sensory strength thresholding
(Dijkstra and Fleming, 2023), it may share mechanisms with confidence formation during visual detection. However, their relation-
ship may be more complex in broader decision-making situations. Consequently, a unified understanding of metacognition across
various processing hierarchies emerges as a crucial avenue for future research.

Conclusion

Beyond the realm of external reality lies another terrain of metacognition that extends into our inner world. Rooted in distinct infor-
mation processing separate from objective decision-making, this internal sphere guides our adaptive behavior, nurtures commu-
nion with others, and serves as a gateway to a myriad of adjacent research fields. By achieving a deeper understanding of this
introspective world, we can unveil the profound tapestry of human existence that eludes the confines of classical decision-
making research.
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